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Machine Learning and Model Selection: Introduction

m In the last lecture, we learn some non-parametric and semi-parametric methods
m We now have many tools in our box beyond linear regression

m Kernel regression, local polynomial regression
m Series regression, partial linear regression

m Which method should we choose?
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Machine Learning and Model Selection: Introduction

m Even for a given method, such as simple regression
m The functional form is still flexible
m Why linear? Simple? Why not y = Inx + x>+ e?
m What covariates to include?
In Mincer equation, we regression wage on edu, exp, and exp2. Why not edu’?
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Machine Learning and Model Selection: Introduction

Model selection issue has been ignored in applied economics for such a long time
More due to data availability issue

Nowadays, more and more datasets are available with huge sizes

BIG DATA! More chances!

We should seriously consider model selection issue
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Machine Learning and Model Selection: Introduction

m There are two approaches to choose a model

m Data driven method (Machine learning)
m Prior causal structure (DAG)

m Data driven method focus on using purely data to determine the model without
prior information

m Prior causal structure means that we determine the model with assumed causal
links and economic knowledge
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Machine Learning and Model Selection: Introduction

m Today, we will discuss the data driven model selection method first
m We select models only using data
m We do not put our economic knowledge into the process

m Let's first introduce a major statistical concept: Bias-variance tradeoff
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m A traditional linear model

y=xB+e (1)
m A model with quadratic term
y=xB+xa+e (2)
® A non-parametric model
y=g(x)+e (3)

m Why not always the second or the third one?
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y = x1B1 + X0 + € (5)
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Machine Learning and Model Selection: Bias-variance Tradeoff

m Model A
y=x8+e (4)

m Model B
y=xB1+x08 +¢ (5)

m Why not always the second one?

m Always better to have a more complicated model?
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m Model Selection: Bias vs. Variance
Assume that:

Y=Ff(X)+e¢

f(x) is a model trained by some data

It will be changed when sample is changed: fAl(x), fAz(x)

Expectation E[f(x)] is taken over different samples

How good is the model?
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Machine Learning and Model Selection: Bias-variance Tradeoff

The prediction mean squared error at some point xg:

EL(Y = F(x0))?1X = x0] = 07 + [EF(x0) = F(x0)T* + E[F(x0) — EF(x0) T’

. ) .2 .
= irreducible error + Bias™ + Variance

Model complexity = Bias |, Variance 1

Super complicated model = Variance 111 (very sensitive when data change)

Overfit current data = Poor out-of-sample prediction

10/52



Machine Learning and Model Selection: An Example of Overfitting

11/52



Machine Learning and Model Selection: An Example of Overfitting

m Consider a data generating process

Y=1+15X+¢
e ~ N(0,100)

It is a noisy process.

11/52



Machine Learning and Model Selection: An Example of Overfitting

m Consider a data generating process

Y=1+15X+¢
e ~ N(0,100)

It is a noisy process.

m Simulate 30 observations from this process

11/52



Machine Learning and Model Selection: An Example of Overfitting

m Consider a data generating process

Y=1+15X+¢
e ~ N(0,100)

It is a noisy process.
m Simulate 30 observations from this process

m Let's start to fit it with different polynomials

11/52



Machine Learning and Model Selection: An Example of Overfitting

m Consider a data generating process

Y=1+15X+¢
e ~ N(0,100)

It is a noisy process.

Simulate 30 observations from this process

Let’s start to fit it with different polynomials
Green line is the true DGP

11/52



Machine Learning and Model Selection: An Example of Overfitting

m Consider a data generating process

Y=1+15X+¢
e ~ N(0,100)

It is a noisy process.

Simulate 30 observations from this process
Let’s start to fit it with different polynomials
Green line is the true DGP

Red line is the fitting function
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Machine Learning and Model Selection: An Example of Overfitting

Figure: First Order (Linear) Fitting
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Machine Learning and Model Selection: An Example of Overfitting

Figure: Second Order (Quadratic) Fitting
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Machine Learning and Model Selection: An Example of Overfitting

Figure: Third Order (Cubic) Fitting
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Machine Learning and Model Selection: An Example of Overfitting

Figure: Fourth Order Fitting
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Machine Learning and Model Selection: An Example of Overfitting

Figure: Fifth Order Fitting
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Machine Learning and Model Selection: An Example of Overfitting

Figure: Sixth Order Fitting
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Machine Learning and Model Selection: An Example of Overfitting

Figure: Twentieth Order Fitting
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Machine Learning and Model Selection: An Example of Overfitting

OVEREITTING

High order polynomials: Picking up noises, not signals!!!
Bad out-of-sample prediction!!!
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Machine Learning and Model Selection: An Example of Overfitting

m We have actually learned two kinds of overfitting

m Runge phenomenon and Gibbs phenomenon
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Machine Learning and Model Selection: Goodness of Fit

There are many ways to measure the goodness of fit, considering overfitting

m Adjusted R-squared: the proportion of explained variations in y
Still remember why we need to adjust for the number of regressors?
m AIC: Akaike Information Criterion
AIC = 2k + nIn(RSS/n), k is the number of regressors

m BIC: Bayesian Information Criterion
This is motivated by the Bayesian approach to model selection
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Machine Learning and Model Selection: Goodness of Fit

Another important measure is Cross-Validation (CV)

m The basic idea is to separate all samples into training sample and validation
sample

m Training sample is used to train (estimate) the model
m Validation sample is then used to check the "out-of-sample” prediction
m We delibrately leave some observations out of estimation

m They can be used to check the model fit and avoid overfitting
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m First, we separate all samples into K parts
m Each time, we choose K-1 parts to train (estimate) the model
m We then use the remaining one part k to calculate the mean squared predicted

error MSE,
m We rotate the samples K times so that each part is used as the validation sample
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First, we separate all samples into K parts

Each time, we choose K-1 parts to train (estimate) the model

We then use the remaining one part k to calculate the mean squared predicted
error MSE,

We rotate the samples K times so that each part is used as the validation sample
once, and have K pieces of MSE,

We take the average of them to have: CV = % Z,’le MSE,
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Machine Learning and Model Selection: Goodness of Fit

Here is the process of CV

First, we separate all samples into K parts

Each time, we choose K-1 parts to train (estimate) the model

We then use the remaining one part k to calculate the mean squared predicted
error MSE,

We rotate the samples K times so that each part is used as the validation sample
once, and have K pieces of MSE,

We take the average of them to have: CV = % Z,’le MSE,

This is called " K-fold Cross-Validation”
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Machine Learning and Model Selection: Goodness of Fit

m CV measures the goodness of the out-of-sample prediction

m You have some data that is not used in the estimation and use it to check your
estimation validity

m It helps you to determine which model fits better to the data, in terms of
out-of-sample prediction

m Smaller CV means better fitting
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Machine Learning and Model Selection: Goodness of Fit

m Now we have some measures of goodness

m That is, the "standard” of what is a "good” model

m Would that be possible to have an automatic algorithm to find a good model for
us?

m This is where machine learning kicks in
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Machine Learning and Model Selection: Machine Learning

m What is machine learning?
"Machine learning (ML) is an umbrella term for solving problems for which
development of algorithms by human programmers would be cost-prohibitive, and
instead the problems are solved by helping machines 'discover’ their ‘own’
algorithms, without needing to be explicitly told what to do by any
human-developed algorithms.” from Wikipedia
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m
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Machine Learning and Model Selection: Machine Learning

Machine learning usage in Economics

Main target: How complicated the model should be?
How to predict Y given X?

When Y is discrete: Classification

[
[

m When Y is continuous: Prediction

m There are so many machine learning algorithms
[

We briefly introduce three of them: Penalized regression, Tree-based method,
Neural network
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Machine Learning and Model Selection: Penalized Regressions

m Let's consider a linear regression
m What if | have so many potential regressors?
m For instance, you have a household survey with 1000 questions

m Is there an automatic way to select the best predictors?
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Machine Learning and Model Selection: Penalized Regressions

m Linear function: y; = x,!ﬁ + €
»0LS . I 7\2
m OLS: 3777 = argmin)_(y; — x;3)
All regressors x play roles.
m We estimate 3 by minimizing SSR = More 5 means smaller SSR

m We need a mechanism to penalize the usage of 5
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Machine Learning and Model Selection: Penalized Regressions

m Penalized: Bpe" = argmin)_(y; — x}ﬁ)z + A(1811,)°
p=1: Lasso regression, drop some x with small prediction power
p=2: Ridge regression, shrink some x with small prediction power

® )\ tuning parameter, how strong we penalize additional " x"
m How to choose A? Cross-validation

m Combination: Elastic Net

BT = argmin Y (vi — xiB)? + AellBlly + (1= a)(IIB12)*)
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Machine Learning and Model Selection: Tree-based Method

m Tree-based methods partition the feature (X) space into a set of rectangles, and
then fit a simple model (constant) in each one.

m Classification and Regression Tree (CART)

m Partition into regions Ry, R>...Ry, assign average value in a region as the
predicted value

F(x5) = L nes Gl (x € Rn)
m How to partition (Grow the tree)?
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Machine Learning and Model Selection: Tree-based Method
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Machine Learning and Model Selection: Tree-based Method

m We use recursive binary partitions
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Machine Learning and Model Selection: Tree-based Method

m We use recursive binary partitions
m (Xp,t1) = ((X2, 12), (X1, 83)) = (X2, ta)

X1 £ty
1
Rs
Ho ta Xz <tz X1 <3
"
- Ra
12 Ry
Xz <ty
R
1 Ry Ra Ra
tq ]
X1
Ry Rs
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Machine Learning and Model Selection: Tree-based Method

m Two choices: continue partitioning or stop + where to partition
m Greedy algorithm

m For each region R, (leaf), we define:

Size (# of obs): N, = {x,- € Ry}
Fitted value (mean as fit): &, = Z Yi
M xeR,
SSE (error in leaf): Qn(T) = Z (i = &m)’
M xeRn
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Machine Learning and Model Selection: Tree-based Method
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For j — th predictor, cut position s

Define half plane Ri(j,s) = {X|X; < s}, Ro(j, s) = {X|X; > s}
How to find (j,s) in each branch? Minimize SSE (Easy)

min[ min Z (vi — a) + rrgin Z (vi— C2)2]

i C:
- ! xi€R1(Jj,5) 2 xi€Ra(j,s)

Here ¢; and ¢, are conditional means (in leaf 1 and 2)
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m Second, how to choose to continue growing the tree or stop?

m Too large — Overfitting; Too small — Losing information
m Grow a big tree Ty, then prune it!

m Step 1: Grow Tg when some minimum node size is reached (say 10)

m Step 2: Pruning. Choose the tree T C Ty with the lowest cost function C,(T).

m T C Ty means any tree T that can be obtained by collapsing any number of internal
nodes in Ty

35/52
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[T|
Ca(T) =) NmQu(T) +alT|
m=1

« as the tuning parameter; | T| as number of terminal nodes

m Total SSE (bias) + Size penalty

m « determines how hard to penalize tree size

36/52



Machine Learning and Model Selection: Random Forests

37/52



Machine Learning and Model Selection: Random Forests

m Using sub-sampling or bagging to reduce variance of a single tree

37/52



Machine Learning and Model Selection: Random Forests

m Using sub-sampling or bagging to reduce variance of a single tree

m Draw a lot of different samples (1,2,...B) with sub-sampling (n < N) (Jackknife)
or bagging (n = N) (Bootstrap)

37/52



Machine Learning and Model Selection: Random Forests

m Using sub-sampling or bagging to reduce variance of a single tree

m Draw a lot of different samples (1,2,...B) with sub-sampling (n < N) (Jackknife)
or bagging (n = N) (Bootstrap)

m De-correlation: In each split, randomly select m variables to do the partition

L&
= EZ Tp(x)

1-p 2

V(f) = p0+ 5

37/52



Machine Learning and Model Selection: Random Forests

m Using sub-sampling or bagging to reduce variance of a single tree

m Draw a lot of different samples (1,2,...B) with sub-sampling (n < N) (Jackknife)
or bagging (n = N) (Bootstrap)

m De-correlation: In each split, randomly select m variables to do the partition

L&
= EZ Tp(x)

1-p 2

V(f) = p0+ 5

m Random Forests = Tree Method + Sampling average (Many De-correlated Trees)

37/52



Machine Learning and Model Selection: Random Forests

m Using sub-sampling or bagging to reduce variance of a single tree

m Draw a lot of different samples (1,2,...B) with sub-sampling (n < N) (Jackknife)
or bagging (n = N) (Bootstrap)

m De-correlation: In each split, randomly select m variables to do the partition

L&
= EZ Tp(x)

1-p 2

V(f) = p0+ 5

Random Forests = Tree Method + Sampling average (Many De-correlated Trees)

To reduce V/(f): B 1 (more sampling), p | (smaller correlation)
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Machine Learning and Model Selection: Random Forests

Algorithm 15.1 Random Forest for Regression or Classification.

1. Forb=1to B:

(a) Draw a bootstrap sample Z* of size N from the training data.
(b) Grow a random-forest tree Tj to the bootstrapped data, by re-
cursively repeating the following steps for each terminal node of
the tree. until the minimum node size 1n,,;, is reached.
i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.

iii. Split the node into two daughter nodes.
2. Output the ensemble of trees {1} }F.
To make a prediction at a new point x:
Regression: frl?(l) = % Zszl Ty(x).

Classification: Let (;b(.r) be the class prediction of the bth random-forest
tree. Then C&(x) = majority vote {Cy(x)}F.
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m We reduce the variance by bagging (B) and de-correlation (p)

m This is a method similar to kernels and nearest-neighbor method
Making predictions using weighted averages of "nearby” observations

m Difference: Weighting scheme
Nearest Neighbor: Not adaptive; Random Forests: Adaptive

m An important application of Random Forests in Economics is Causal Forests
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Machine Learning and Model Selection: Causal Forests

Main topic in causal inference: Treatment effect
Mostly ATE, LATE etc.

Heterogeneous Treatment Effect
Cherry picking? = Institutional restrictions on trials

Unexpected heterogeneity

Wager and Athey develop a machine learning tool, Causal Forests (An extension
of Random Forests)

To reveal the true underlying heterogeneous treatment effects

40/52
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Machine Learning and Model Selection: Causal Forests

It tells us how to divide groups to get the "real” heterogeneous TE
Data of (X;, Y;, W;), W; is treatment assignment. L as a leaf (region).
Treatment effect: 7(x) = E[Y,-(l) - Y,-(O)|X,- = x]

Unconfoundness: {Y,-(O), Y,-(l)} 1 Wi X;

Tips: We assume unconfoundness here, which means that causal forests is not a
method to deal with endogeneity issue
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m Estimation of TE: Given x in leaf L(x), the difference of the average outcome Y
for treated/non-treated grou

Y; Yi
. 1 1
TX) = 77—V Y — Yi
(x) = TEwerxen {I_'W‘_gxﬂ} i T Tirw=o.xel]] {i'W-—%:X-eL} j
. 1= 47N . 1= YN

m Implement the Random Forests using a criterion: maximizing variance of 7(X;)
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m A tree is honesty, if for each training sample i, it is either used to estimate 7 or
used to decide splits

m Double-Sample Trees: Averagely divide samples into two parts / and J. Grow the
tree using | and then estimate 7 in each leaf using J.

m Honest Causal Forests is consistent and asymptotically normal
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m Paper report
Levy (2021) Social Media, News Consumption, and Polarization: Evidence from a
Field Experiment

m Please also read Online Appendix C.5
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m Another widely used machine learning method is Neural Networks
m It attracts people’s attention during these days in media
m Al, Chatgpt, AlphaGo...Sky Net
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m Consider a single layer classification model, where Y/ refers to each choice/class

m X - Input; Z- Hidden layer/unit; Y - Output
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This nonlinearity is important: make NN differ from linear regression
It is called the activation function

Step 2: from hidden unit Z to output Y

Te=Box+6LZ k=1,...K
fk(X) = gk(T)ak = 1a"'7K

m g is a nonlinear function (Step or Logit)
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Machine Learning and Model Selection: Neural Networks

Why do we call this Neural Networks?

Because it was first developed as models for the human brain
Each unit represents a neuron

Connections are synapses

There can be multiple layers

When step function is used for ¢ and g, neurons fire when signal passed to the
. T
unit (agm + oy, X) exceeds some threshold
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m How to estimate this model?
m Simply nonlinear Least Square
m How to avoid overfitting?
]

Regularize the optimization problem min R(6) with a penalty term:
minR(0) + \J(9)
2 2
J(H) = Z/Bkm + Zamp
km ml

® )\ is a tuning parameter
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m Model complexity is double-edged: Bias-variance tradeoff

m In general, there are many standards to evaluate model’s goodness-of-fit
CV, AIC, BIC

m Machine learning gives you automatic algorithms to select model
Penalized regression, Tree-based method (Random Forests), Neural Networks

m An important new application in economics is Causal Forests
Can be used to detect heterogeneous treatment effect
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Machine Learning and Model Selection: Conclusion

m But remember, these are only statistical tools
m The most important method is still your ECONOMIC intuition!

m Never exclude education from a wage equation, even if AIC/BIC told you so!
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Machine Learning and Model Selection: Conclusion

m In this lecture, we focus on model selection conditional on Unconfoundness
assumption

m Thus, we discuss more on model prediction but not causal structure
m This is a totally data driven method with no prior knowledge in economics

m Next lecture, we will turn to variable (model) selection based on our proposed
causal structure

m We will introduce a new tool to deal with this issue: Causal Graph
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