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Plan of This Course

Basic causal inference and statistical tools (Week 1-4)
Potential outcome framework, RCT, matching vs regression, non-parametric
method, machine learning, DAG framework

IV (Week 5-7)
IV, LATE, GMM, MTE, Bartik IV

Causal inference with panel data (Week 8-9)
Basic DID and event study, pre-trend testing, synthetic control, staggered DID

Other topics (Week 10-13)
RDD, Std err issues, Peer effect and spillover, intro to discrete choice model

Student Presentation (Week 14-15)
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Plan of This Course

The goal of this course is to get all students stop being reg monkeys

What is regression monkey? ⇒ Run regs without creativity

Running regressions without knowing why
Only know very basic statistical off-the-shelf methods
Have no economic sense, do not know any economic theory

This is no economist, this is BAD statistician!

This course aims to teach you

The logic behind regression and causal inference
Statistical tools beyond regression in causal inference
How to regularize data with your economic theory and intuition
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Motivating Example: Female Labor Participation

This is an example from Professor Chao Fu.

Consider a female labor participation problem

Utility maximization of female i :

max Ui(ci , 1 − li) + ϵil (1)

s.t. ci = wi li

ci : consumption; li : labor supply; ϵil : unobserved taste shock; wi : wage
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Motivating Example: Female Labor Participation

Assume that li is binary (work, not work)

li = 1 if U(l = 1) ≥ U(l = 0):

Ui(wi , 0) + ϵi1 ≥ Ui(0, 1) + ϵi0 (2)

Then given wi , we have a threshold value of ϵi0 − ϵi1 for i to choose to work:

li = 1 if ϵi0 − ϵi1 < ϵ
∗

(3)

ϵ
∗
= Ui(wi , 0) − Ui(0, 1)
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Motivating Example: Female Labor Participation

Assume that shock ϵi0 − ϵi1 has a CDF Fϵ∣w
We have the following working probability for i :

G(w) = Pr(l = 1∣w) = ∫
ϵ
∗

−∞
dFϵ∣w

= Fϵ∣w(ϵ∗(w)) (4)

Two empirical research approaches for this question
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Motivating Example: Female Labor Participation

1. We can directly estimate probability function G with linearity assumption

Assume that G is a linear function

G(w) = β0 + β1wi (5)

Linear Probability Model ⇒ We can use OLS to estimate β

This is called ”Reduced-form” approach

We usually identify it by some research ”design” (IV, RDD, DID)

Thus, it is also called ”Design-based” approach
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Motivating Example: Female Labor Participation

2. We can estimate ϵ’s CDF F , and utility function U

We have the likelihood function as:

L(ΘU
,Θ

F
; data) =

N

∏
i=1

Fϵ(ϵ∗)li [1 − Fϵ(ϵ∗)]1−li (6)

Θ
U
is the parameter set of utility function; Θ

F
is the parameter set of shock’s

CDF

We use MLE to estimate Θ
U
and Θ

F
⇒ Recover choice structure directly

This is called ”Structural”/”Model-based” approach
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Motivating Example: Female Labor Participation

For example,

Assume a linear utility function U = αwi + ϕ(1 − li)
And ϵ follows T1EV distribution
We have the likelihood function as:

L(ΘU
,Θ

F
; data) =

N

∏
i=1

Fϵ(ϵ∗)li [1 − Fϵ(ϵ∗)]1−li

=

N

∏
i=1

( exp(αwi )
exp(αwi ) + exp(ϕ) )

li × ( exp(ϕ)
exp(αwi ) + exp(ϕ) )

1−li (7)
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Two Approaches: Internal vs External Validity

Now we compare these two approaches

First, we need to clarify two important concepts

Internal validity
External validity

Internal means the validity within the current specific context or environment

External means the validity outside the current context or environment

External refers to our attempt to extrapolate our analysis
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Two Approaches: Internal vs External Validity

There are three layers of policy evaluation (Heckman and Vytlacil, 2007)

Take One Child Policy (OCP) as an example

Evaluating the impact of a historical intervention
What was the impact of the OCP on fertility rate?
Forecasting the impact of an intervention previously happened in environment A to
happen in another environment B
What would be the impact if we restart the OCP in 2023?
Forecasting the impact of an intervention never happened in history in any
environment
What would be the impact if we force all women to give birth to at least one child?

The first one is ”internal”

The second and the third are ”external”
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Two Approaches: Structural/Model-based Approach

Target: Primitive parameters ⇒ Choice structure
Agent’s utility function, firm’s production function, market structure...

Advantages

Deeper economic thinking: we can understand the original decision-making process
Great external validity ⇒ Solid under Lucas’ critique
More reliable counterfactual analysis

Disadvantages

Need more (untestable) assumptions on functional form, distribution of
unobservable...
Low internal validity
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Two Approaches: Reduced-form/Design-based Approach

Target: Some marginal effect of conditional expectation function
What is the impact of A on B?

Do not care about the mechanism ⇒ A black box of causal effect

Advantages

Very reliable if you have a good exogenous shock
Great internal validity, not so many assumptions

Disadvantages

No mechanism is revealed ⇒ More of a statistician than an economist
Usually effects are very local ⇒ Low external validity
The causal effect is estimated for group A. Can it be applied to group B?
Hard to have external counterfactual interpretation
Lucas’ critique, General Equilibrium effect...

13 / 48



Two Approaches: Reduced-form/Design-based Approach

Target: Some marginal effect of conditional expectation function
What is the impact of A on B?

Do not care about the mechanism ⇒ A black box of causal effect

Advantages

Very reliable if you have a good exogenous shock
Great internal validity, not so many assumptions

Disadvantages

No mechanism is revealed ⇒ More of a statistician than an economist
Usually effects are very local ⇒ Low external validity
The causal effect is estimated for group A. Can it be applied to group B?
Hard to have external counterfactual interpretation
Lucas’ critique, General Equilibrium effect...

13 / 48



Two Approaches: Reduced-form/Design-based Approach

Target: Some marginal effect of conditional expectation function
What is the impact of A on B?

Do not care about the mechanism ⇒ A black box of causal effect

Advantages

Very reliable if you have a good exogenous shock
Great internal validity, not so many assumptions

Disadvantages

No mechanism is revealed ⇒ More of a statistician than an economist
Usually effects are very local ⇒ Low external validity
The causal effect is estimated for group A. Can it be applied to group B?
Hard to have external counterfactual interpretation
Lucas’ critique, General Equilibrium effect...

13 / 48



Two Approaches: Reduced-form/Design-based Approach

Target: Some marginal effect of conditional expectation function
What is the impact of A on B?

Do not care about the mechanism ⇒ A black box of causal effect

Advantages

Very reliable if you have a good exogenous shock
Great internal validity, not so many assumptions

Disadvantages

No mechanism is revealed ⇒ More of a statistician than an economist
Usually effects are very local ⇒ Low external validity
The causal effect is estimated for group A. Can it be applied to group B?
Hard to have external counterfactual interpretation
Lucas’ critique, General Equilibrium effect...

13 / 48



Two Approaches: Reduced-form/Design-based Approach

Target: Some marginal effect of conditional expectation function
What is the impact of A on B?

Do not care about the mechanism ⇒ A black box of causal effect

Advantages

Very reliable if you have a good exogenous shock
Great internal validity, not so many assumptions

Disadvantages

No mechanism is revealed ⇒ More of a statistician than an economist
Usually effects are very local ⇒ Low external validity
The causal effect is estimated for group A. Can it be applied to group B?
Hard to have external counterfactual interpretation
Lucas’ critique, General Equilibrium effect...

13 / 48



Two Approaches: Reduced-form/Design-based Approach

Target: Some marginal effect of conditional expectation function
What is the impact of A on B?

Do not care about the mechanism ⇒ A black box of causal effect

Advantages

Very reliable if you have a good exogenous shock
Great internal validity, not so many assumptions

Disadvantages

No mechanism is revealed ⇒ More of a statistician than an economist
Usually effects are very local ⇒ Low external validity
The causal effect is estimated for group A. Can it be applied to group B?
Hard to have external counterfactual interpretation
Lucas’ critique, General Equilibrium effect...

13 / 48



Two Approaches: Reduced-form/Design-based Approach

Target: Some marginal effect of conditional expectation function
What is the impact of A on B?

Do not care about the mechanism ⇒ A black box of causal effect

Advantages

Very reliable if you have a good exogenous shock
Great internal validity, not so many assumptions

Disadvantages

No mechanism is revealed ⇒ More of a statistician than an economist
Usually effects are very local ⇒ Low external validity
The causal effect is estimated for group A. Can it be applied to group B?
Hard to have external counterfactual interpretation
Lucas’ critique, General Equilibrium effect...

13 / 48



Two Approaches: Reduced-form/Design-based Approach

Target: Some marginal effect of conditional expectation function
What is the impact of A on B?

Do not care about the mechanism ⇒ A black box of causal effect

Advantages

Very reliable if you have a good exogenous shock
Great internal validity, not so many assumptions

Disadvantages

No mechanism is revealed ⇒ More of a statistician than an economist
Usually effects are very local ⇒ Low external validity
The causal effect is estimated for group A. Can it be applied to group B?
Hard to have external counterfactual interpretation
Lucas’ critique, General Equilibrium effect...

13 / 48



Two Approaches: Reduced-form/Design-based Approach

Target: Some marginal effect of conditional expectation function
What is the impact of A on B?

Do not care about the mechanism ⇒ A black box of causal effect

Advantages

Very reliable if you have a good exogenous shock
Great internal validity, not so many assumptions

Disadvantages

No mechanism is revealed ⇒ More of a statistician than an economist
Usually effects are very local ⇒ Low external validity
The causal effect is estimated for group A. Can it be applied to group B?
Hard to have external counterfactual interpretation
Lucas’ critique, General Equilibrium effect...

13 / 48



Two Approaches: Reduced-form/Design-based Approach

Target: Some marginal effect of conditional expectation function
What is the impact of A on B?

Do not care about the mechanism ⇒ A black box of causal effect

Advantages

Very reliable if you have a good exogenous shock
Great internal validity, not so many assumptions

Disadvantages

No mechanism is revealed ⇒ More of a statistician than an economist
Usually effects are very local ⇒ Low external validity
The causal effect is estimated for group A. Can it be applied to group B?
Hard to have external counterfactual interpretation
Lucas’ critique, General Equilibrium effect...

13 / 48



Two Approaches: Reduced-form/Design-based Approach

This course will mainly focus on the Reduced-form/Design-based Approach

Specifically, I will carefully go through traditional regression tools used in Applied
Economics

And introduce tools beyond simple regression

I will also introduce a little Structural/Model-based Approach (DCM)

In general, let’s try not to be Reg Monkeys!
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Potential Outcome Framework and RCT

Example : Health status and hospitalization

Group Sample Size Mean Health Status

Hospital 7,774 3.21
No hospital 90,049 3.93

Going to hospital makes you more sick?

No! People go to hospital because they are sick.

Correlation is NOT causality!!!
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Potential Outcome Framework and RCT

Potential Outcome Framework/Rubin Causal Model

Binary treatment Di for individual i , some outcome Yi

Y0i : The ”potential outcome” of i if he/she is not treated, regardless of the
treatment status in reality

Y1i : The ”potential outcome” of i if he/she is treated, regardless of the treatment
status in reality

Thus, we have:

Yi = {Y1i if Di = 1

Y0i if Di = 0
(8)

= Y0i + (Y1i − Y0i)Di
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Potential Outcome Framework and RCT

Individual treatment effect: Y1i − Y0i

Not available: There is only one world! Given i , you see either Y0i or Y1i

But we can consider averages: By differencing mean outcomes from the two
groups

E[Yi ∣Di = 1] − E[Yi ∣Di = 0] (9)

=E[Y1i ∣Di = 1] − E[Y0i ∣Di = 1]
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
Average Treatment on the Treated (ATT)

+E[Y0i ∣Di = 1] − E[Y0i ∣Di = 0]
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Selection bias

ATT: Causal effect on the treated group

Selection bias: Original difference between treated and untreated group

Give me an example of the selection bias
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Potential Outcome Framework and RCT

Randomization can solve the selection problem

Assume that we randomly assign the treatment to the population:

Di ⫫ Y0i ,Y1i (10)

Then we have selection bias to be zero:

E[Y0i ∣Di = 1] − E[Y0i ∣Di = 0] = 0

Thus, simple difference between the mean of treated and untreated group is ATT
(and overall ATE)

E[Yi ∣Di = 1] − E[Yi ∣Di = 0] = E[Y1i ∣Di = 1] − E[Y0i ∣Di = 1] = ATT = ATE
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Regression, CEF and Causal Inference

Regression is the most useful tool in applied econometrics

When can we interpret regression coefficient as causal effect?

What are the relations among regression, conditional expectation function (CEF)
and treatment effect?
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Regression, CEF and Causal Inference

Conditional Expectation Function (CEF)

CEF is the conditional expectation of an outcome Yi , given some predictor vector
Xi

E[Yi ∣Xi = x] = ∫ tfy(t∣Xi = x)dt (11)

where fy is pdf

This is a population concept (n → ∞)

It describes a prediction of X on Y , but NOT necessarily causal

We can always decompose Yi as predicted part (CEF) + error part

Yi = E[Yi ∣Xi] + ϵi (12)

where E[ϵi ∣Xi] = 0 (conditional mean zero)
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Regression, CEF and Causal Inference

CEF is the best predictor of Yi given Xi

It minimizes the mean squared prediction errors

Theorem 3.1.2 in MHE

Let m(Xi) be any function of Xi . The CEF solves

E[Yi ∣Xi] = argminm(Xi )E[(Yi −m(Xi))2]

so it is the MMSE predictor of Yi given Xi .
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Regression, CEF and Causal Inference

Linear Regression

Regression is a linear prediction that minimizes the mean squared error

Yi = X
′
i β + ϵi

β = argminbE[(Yi − X
′
i b)2]

We have the first order condition (moment condition) as:

E[Xi(Yi − X
′
i β)] = 0

The solution can be written as:

β = E[XiX
′
i ]−1E[XiYi]
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Regression, CEF and Causal Inference

Tips: Difference between β and β̂OLS

Definition

β = E[XiX
′
i ]−1E[XiYi]

β̂OLS = (X ′
X )−1X ′

Y

β̂OLS is an estimator of β (there can be alternative estimators, e.g. MLE)

Population vs Sample, Identification vs Estimation

Xi is an 1 × k vector, Yi is a scalar. They are random variables

X is an n × k matrix, Y is an n × 1 vector. They are realizations of random
variables (real data)
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X is an n × k matrix, Y is an n × 1 vector. They are realizations of random
variables (real data)
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Regression, CEF and Causal Inference

CEF and linear regression

E[ϵi ∣Xi] = 0 vs E[Xiϵi] = 0

Minimizing MMSE: Best predictor (CEF) vs Best linear predictor (linear
regression)

CEF is stronger than linear regression

If CEF is linear, then linear regression is identical to CEF

Even if CEF is not linear, regression is the best linear approximation to CEF
(Minimize MSE)
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Regression, CEF and Causal Inference

For any data, you can always run a regression (as long as the rank condition is
satisfied)

But the coefficient β is not necessarily a causal effect

When does a regression coefficient have a causal meaning?
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Regression, CEF and Causal Inference

Case 1: We assume randomization (no need for controls) and constant TE

When we have a random experiment with Di ⫫ Y0i ,Y1i and regression

Yi = α + ρDi + ϵi

Under this randomization, CEF is linear, then:

ρ = E[Yi ∣Di = 1] − E[Yi ∣Di = 0] = E[Y1i − Y0i ∣Di = 1]

Regression coefficient ρ is the ATT/TE
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Regression, CEF and Causal Inference

Case 2: We assume randomization after controls

Key to go from correlation/prediction to causality: Conditional Independent
Assumption (CIA)/Selection on Observables

Di ⫫ Y0i ,Y1i ∣Xi

Treatment is random, after controlling for covariates Xi
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Regression, CEF and Causal Inference

Case 2: We assume randomization after controls

Homogeneous (constant) treatment effect case is simple

For each Xi = x , we have the following regression:

Yi = α + ρrDi + X
′
i γ + νi (13)

With linear CEF, regression coefficient ρr is the treatment effect

ρr = E[Yi ∣Xi ,Di = 1] − E[Yi ∣Xi ,Di = 0] = E[Y1i − Y0i]
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Regression, CEF and Causal Inference

Case 2: We assume randomization after controls

Heterogeneous treatment effect case is more complicated

Let δx be the within group ATE:

δx = E[Yi ∣Xi ,Di = 1] − E[Yi ∣Xi ,Di = 0] = E[Y1i ∣Xi ,Di = 1] − E[Y0i ∣Xi ,Di = 1]

It can be shown that ρr is the treatment-variance weighted average of δx :

ρr =
E[σ2

D(Xi)δx]
E[σ2

D(Xi)]
(14)

σ
2
D(Xi) ≡ E[(Di − E[Di ∣Xi])2∣Xi]

Proof see MHE Chapter 3.3.1
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Regression, CEF and Causal Inference

Important! How to understand/interpret equation (14)?

More weights are assigned to cells with largest treatment variance

Zero weight if a cell is full of treated/untreated individuals
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Regression, CEF and Causal Inference

Homework: What is the implication of expression (14) when unconditional
independence holds (Like in an RCT)? That is, when D ⫫ Y1i ,Y0i?
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Regression, CEF and Causal Inference

Let’s compare assumptions of Regression, CEF and Causal Model

y = f (D) + e

Linear Regression: f (D) = βD,E(De) = 0 Uncorrelated

CEF: E(e∣D) = 0 Mean Independence

Causal Model: e ⫫ D (Di ⫫ y0i , y1i) Independence

Tips: When D is dummy, linear regression is CEF
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Regression, CEF and Causal Inference

Main takeaways from this part

Strength of assumptions regarding unobservable e
Causal model (CIA) > CEF (Mean Independence) > Linear regression
(Uncorrelated)

CEF is the best predictor of Y given X

Linear regression is the best ”linear” predictor of Y given X

Linear regression is the best linear approximation of CEF

Under CIA and homogeneous TE, regression coefficient is the TE

Under CIA and heterogeneous TE, regression coefficient is the treatment-variance
weighted average of group ATE
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Simpson Paradox, Omitted Variables and Bad Controls

Consider two treatments A and B for COVID

We examine the effect of the treatments by patients’ conditions (mild/severe)

We have the death rate by treatments and conditions as:

Mild Severe Total

A 15% (210/1400) 30% (30/100) 16% (240/1500)
B 10% (5/50) 20% (100/500) 19% (105/550)

Total death rate: A < B

Death rate within condition group: A > B
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Simpson Paradox, Omitted Variables and Bad Controls

Which one is better? A or B? ⇔ Should we control for condition (C)?

It depends on the causal structure!

Condition is the cause or the consequence of the treatment?
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Simpson Paradox, Omitted Variables and Bad Controls

Case 1: When condition C is a cause of treatment T

T Y

C

C causes T and Y; T causes Y

C is a pre-determined variable to T ⇒ C is the cause

We should control for C ⇒ B is better

If we do not control for C ⇒ Omitted Variable Bias
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Simpson Paradox, Omitted Variables and Bad Controls

Rule of thumb: Control pre-determined variables, not post-determined ones

But sometimes controlling for pre-determined variables can also be wrong

Let’s discuss this ”bad control” issue in more details in Week 4

DAG will offer you a clear and powerful tool to determine which variables to
control, given your proposed causal structure
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Simpson Paradox, Omitted Variables and Bad Controls

Quiz: Should we control for X?

Y=wage, D=education, X=natural ability
Y=wage, D=education, X=labor participation decision
Y=GDP at t+1, D=R&D expenditure at t, X=trade volume at t+1
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Matching

Regression is only one of the tools we use to tackle causal effect

Matching is another common tool

It is simple and non-parametric

Basic idea

(1) Compare treated and control units with same covariates;
(2) Put together to produce a single overall weighted average treatment effect

Regression is a particular sort of weighted matching estimator
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Matching

Assume that for treatment Di , we have CIA: Y0i ,Y1i ⫫ Di ∣Xi

We can express treatment on the treated (TOT) as:

δTOT = E[Y1i − Y0i ∣Di = 1] = E[E[Y1i − Y0i ∣Xi ,Di = 1]∣Di = 1]
= E[E[Y1i ∣Xi ,Di = 1] − E[Y0i ∣Xi ,Di = 1]∣Di = 1]
= E[E[Yi ∣Xi ,Di = 1] − E[Yi ∣Xi ,Di = 0]∣Di = 1]
= E[δx ∣Di = 1]

The corresponding matching estimator (sample analog) is:

δ̂TOT = ∑
x

δ̂x P̂(Xi = x∣Di = 1)

Similarly, we can derive a matching estimator for ATE:

δ̂ATE = ∑
x

δ̂x P̂(Xi = x)
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Matching vs Regression

Regression is one of the matching estimators!

Matching estimator of TOT: δ̂TOT = ∑x δ̂xP(Xi = x∣Di = 1)
Weighted by probability mass for treated group

Matching estimator of ATE: δ̂ATE = ∑x δ̂xP(Xi = x)
Weighted by probability mass for all units

Regression estimator:
∑x σ̂

2
D(Xi )δ̂x

∑x σ̂
2
D(Xi )

Weighted by treatment variances
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Matching vs Regression

Homework: Explain the meaning of the weights in these three estimators. To
which observation/cell are they going to give the largest weights?
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Propensity Score Matching

Assume that we want to estimate college premium on wages

To have CIA, we need a lot of controls:
Gender, race, nationality, birth weight, IQ, parents’ education, parents’ income...

Curse of dimensionality: There are too many dimensions in Xi

We will not have enough observations for each value of Xi to estimate δ̂x

Maybe you have 10,000 observations

But only 2 of them are Han boys with IQ 150, family income 100,000 RMB/year,
parents are high-school educated

Very hard to implement the matching estimator (but regression is still feasible)
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Propensity Score Matching

Propensity Score Matching (PSM) is a simple method to reduce the dimensionality

Assumption 1 (CIA): Y1i ,Y0i ⫫ Di ∣Xi

Assumption 2 (Overlap): 0 < P(Di = 1∣Xi) < 1

PSM Theorem: If Assumptions 1 and 2 hold, we have Y1i ,Y0i ⫫ Di ∣P(Xi), where
P(Xi) = P(Di = 1∣Xi)
We are fine, as long as we control for the propensity score P(X )
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Propensity Score Matching

Go back to the college premium example

Instead of matching across all controls (gender, family income...)

We can match for the predicted probability P(X ) for each person to go to college

We just replace all Xi with P(Xi) in the matching estimator, and get the PSM
estimator.
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Regression vs PSM

Regression usually does not suffer from the curse of dimensionality

Since we are regularizing controls by linear function (next class)

We can also combine regression and PSM by running a regression, controlling for
propensity score (but not each variable)
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Regression vs PSM

In general, Angrist prefers regression

Because some parts of the process to implement PSM are not standardized

e.g. how to estimate the propensity score P(X )? (Logit? LPM? Probit?)

PSM CANNOT solve the endogeneity issue!!!!!!

PSM CANNOT solve the endogeneity issue!!!!!!

PSM CANNOT solve the endogeneity issue!!!!!!
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