Frontier Topics in Empirical Economics: Week 11 Standard Error Issues

Zibin Huang¹

¹College of Business, Shanghai University of Finance and Economics

December 2, 2024

Introduction: Nonstandard Standard Error Issues

- Inference is important in practice: Data ⇒ Target distribution
- How accurate is our estimate? How confident are we on our results?
- In traditional inference, we have two assumptions:
 - Uncertainty comes from random-sampling, asymptotics when $n \rightarrow \infty$
 - i.i.d. sample, no correlations
- What if these two assumptions are violated?

Introduction: Nonstandard Standard Error Issues

- In this lecture, we consider two cases
- First, when *n* is naturally limited (e.g. number of provinces)
- Another type of uncertainty becomes important: Design-based uncertainty
- Second, when i.i.d. fails and errors are clustered
- We have to incorporate this structure in inference
- Angrist calls them "Nonstandard Standard Error Issues"

- In usual case, when we talk about inference, what is that?
- We have a target parameter: "estimand" β (Target)
- We want to recover it using an "estimator" (Method) $\hat{\beta}$ with a sample from the population, which gives you a result called "estimate" $\hat{\beta} = 0.5$ (Result)
- This process is called *estimation*, or statistical inference (Process)

- Usually, we consider sampling-based uncertainty
- Each time you draw a new sample, it gives you a new estimate from your estimation process
- When sample changes, your estimation result changes
- Uncertainty comes from sampling process
- Thus, you have a standard error for your estimation
- But is this the only uncertainty in empirical research?
- Today, we are going to introduce the second source of uncertainty

- Design-based uncertainty, introduced by Abadie et al. (2020)
- It is the uncertainty coming from the treatment assignment
- Treatment X_i is no longer considered fixed
- In some cases, person 1 is treated; in other cases, person 1 is not treated
- The potential outcome you observed is different when treatment is randomly changed
- We show that this helps you to understand uncertainty of estimation when you have non-negligible sample size

- To visually explain the difference between traditional sampling-based uncertainty and design-based uncertainty
- Let's take a look at two tables from Abadie et al. (2020)
- R_i is an indicator of whether this observation is included in the sample

Sampling-based uncertainty

TABLE I SAMPLING-BASED UNCERTAINTY (✓ IS OBSERVED, ? IS MISSING)

Unit	Actual Sample			Alternative Sample I			Alternative Sample II			
	Y _i	Z_i	R_i	Y _i	Z_i	R_i	Y _i	Z_i	R_i	
1	\checkmark	\checkmark	1	?	?	0	?	?	0	
2	?	?	0	?	?	0	?	?	0	
3	?	?	0	\checkmark	\checkmark	1	\checkmark	\checkmark	1	
4	?	?	0	\checkmark	\checkmark	1	?	?	0	
:	:	:	:	:	:	:	:	:	:	
•	•	•		•	•	•	•	•	•	
n	\checkmark	\checkmark	1	?	?	0	?	?	0	

Design-based uncertainty

TABLE II Design-Based Uncertainty (✓ Is Observed, ? Is Missing)

Actual Sample			Alternative Sample I			Alternative Sample II			
$Y_i^*(1)$	$Y_i^*(0)$	X _i	$Y_i^*(1)$	$Y_i^*(0)$	X_i	$Y_i^*(1)$	$Y_i^*(0)$	X _i	
✓	?	1	\checkmark	?	1	?	\checkmark	0	
?	\checkmark	0	?	\checkmark	0	?	\checkmark	0	
?	\checkmark	0	\checkmark	?	1	\checkmark	?	1	
?	\checkmark	0	?	\checkmark	0	\checkmark	?	1	
:	:	:	:	:	:	:	:	:	
	• •	1			0			0	
	$ \frac{A}{Y_i^*(1)} $ $ \stackrel{\checkmark}{} \stackrel{?}{} \stackrel{?}{} \stackrel{?}{} \stackrel{?}{} \stackrel{?}{} \stackrel{?}{} \stackrel{?}{} \stackrel{?}{} \stackrel{.}{} \stackrel{.}{} \stackrel{\checkmark}{} $	Actual Sample $Y_i^*(1)$ $Y_i^*(0)$ \checkmark ?? \checkmark ? \checkmark ? \checkmark ? \checkmark	$\begin{tabular}{ c c c c c } \hline \hline $Actual Sample$ \\ \hline $Y_i^*(1)$ & $Y_i^*(0)$ & X_i \\ \hline $Y_i^*(1)$ & $Y_i^*(1)$ & $Y_i^*(1)$ & $Y_i^*(1)$ & $Y_i^*(1)$ \\ \hline $Y_i^*(1)$ & $Y_i^*(1)$ &$	$\begin{array}{c c} \hline Actual Sample & Alter \\ \hline \hline Y_i^*(1) & Y_i^*(0) & X_i & \hline Y_i^*(1) \\ \hline \hline \hline \hline & \checkmark & ? & 1 & \checkmark \\ ? & \checkmark & 0 & ? \\ ? & \checkmark & 0 & \checkmark \\ ? & \checkmark & 0 & ? \\ \vdots & \vdots & \vdots & \vdots \\ \hline \hline & \checkmark & ? & 1 & 2 \\ \end{array}$	Actual SampleAlternative Sample $Y_i^*(1)$ $Y_i^*(0)$ X_i $Y_i^*(1)$ $Y_i^*(0)$ \checkmark ?1 \checkmark ?? \checkmark 0? \checkmark ? \checkmark 0 \checkmark ?? \checkmark 0? \checkmark ? \checkmark 0? \checkmark ? \checkmark 0? \checkmark ? \checkmark 0? \checkmark	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Actual SampleAlternative Sample IAlternative Sample I $Y_i^*(1)$ $Y_i^*(0)$ X_i $Y_i^*(1)$ $Y_i^*(0)$ X_i $Y_i^*(1)$ $Y_i^*(0)$ \checkmark ?1 \checkmark ?1? \checkmark ? \checkmark 0? \checkmark 0? \checkmark ? \checkmark 0? \checkmark 0? \checkmark ? \checkmark 0? \checkmark 0? \checkmark ? \checkmark 0? \checkmark 0 \checkmark ?:::::::: \checkmark ?1? \checkmark 0 \checkmark ?:::::::: \checkmark ?1? \checkmark 0? \checkmark	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Sampling-based uncertainty

- Treatment is fixed, sampling observation is random
- For non-sampled individuals, we cannot observe anything
- Source of uncertainty: in each sample, we have different observations
- Design-based uncertainty
 - Treatment is random, sampling observation is fixed (e.g. all provinces in China)
 - For each individual, we only observe potential outcome in the realized status (but not counterfactual status)
 - Source of uncertainty: in each sample, we have different treatment status for each individual

- Next, the authors construct a simple model and make the following four points:
 - 1. Show how design-based uncertainty affects the variance of the regression estimator
 - 2. Show White estimator remains conservative when we consider design-based uncertainty
 - **3**. We can derive a finite-population correction for White estimator
 - 4. Discuss two sources of uncertainty and external/internal validity

- Assume that we have a **finite** population of size *n*
- We randomly sample *N* from *n*
- $R_i \in \{0, 1\}$ as an indicator of whether *i* is sampled or not
- There is a random binary treatment regressor X_i
- n_1, N_1 are treated, n_0, N_0 are not treated
- We have observed and potential outcome as:

$$Y_i = Y_i^*(X_i) = \begin{cases} Y_i^*(1) \text{ if } X_i = 1, \\ Y_i^*(0) \text{ if } X_i = 0 \end{cases}$$

Potential outcomes are assumed to be non-stochastic

- We use bold letters to represent vector of the whole sample (Y, Y^{*}_i(1), Y^{*}_i(0), R)
- We define three estimands as our proposed targets
 - Descriptive estimand: free of **R** and potential outcome (population mean difference) $\theta^{descr} = \frac{1}{n_1} \sum_{i=1}^n X_i Y_i - \frac{1}{n_0} \sum_{i=1}^n (1 - X_i) Y_i$
 - Causal estimand: parameter depending on potential outcome $\mathbf{Y}_{i}^{*}(1), \mathbf{Y}_{i}^{*}(0)$ $\theta^{causal, sample} = \frac{1}{N} \sum_{i=1}^{n} R_{i}(Y_{i}^{*}(1) - Y_{i}^{*}(0))$ $\theta^{causal} = \frac{1}{n} \sum_{i=1}^{n} (Y_{i}^{*}(1) - Y_{i}^{*}(0))$
- $\theta^{causal,sample}$ is the average causal effect of the current sample
- θ^{causal} is the average causal effect of the whole population

- When estimating θ^{descr}, we do not care about design-based uncertainty Nothing about treatment or potential outcome
- When estimating θ^{causal,sample}, we do not care about sampling-based uncertainty Nothing about sampling process (given current sample)
- When estimating θ^{causal} , we do care about both types of uncertainty

• To estimate these estimands, we use a simple OLS regression of Y_i on X_i to have:

$$\hat{\theta} = \frac{1}{N_1} \sum_{i=1}^n R_i X_i Y_i - \frac{1}{N_0} \sum_{i=1}^n R_i (1 - X_i) Y_i$$

- Sampling-based uncertainty comes from the randomness of R
- Design-based uncertainty comes from the randomness of **X**
- We further assume that both sampling and treatment assignment are random

It is shown that:

 $E[\hat{\theta}|\mathbf{X}, N_{1}, N_{0}] = \theta^{descr}$ $E[\hat{\theta}|\mathbf{R}, N_{1}, N_{0}] = \theta^{causal, sample}$ $E[\hat{\theta}|N_{1}, N_{0}] = \theta^{causal}$

- Conditioning on treatment, θ is unbiased for descriptive estimand
- Conditioning on sampling, θ is unbiased for causal sample estimand
- \blacksquare Conditioning on none of them, θ is unbiased for causal estimand

• We define the population variances as follows:

$$S_{x}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} \left(Y_{i}^{*}(x) - \frac{1}{n} \sum_{j=1}^{n} Y_{j}^{*}(x) \right)^{2}, \text{ for } x = 0, 1$$

$$S_{\theta}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} \left(Y_{i}^{*}(1) - Y_{i}^{*}(0) - \frac{1}{n} \sum_{j=1}^{n} (Y_{j}^{*}(1) - Y_{j}^{*}(0)) \right)^{2}$$

- S_x^2 is the variance of potential outcomes for population
- S_{θ}^2 is the variance of treatment effect for population

Based on the defined population variance, we can derive three variances

$$V^{total}(N_1, N_0, n_1, n_0) = var(\hat{\theta} | N_1, N_0) = \frac{S_1^2}{N_1} + \frac{S_0^2}{N_0} - \frac{S_{\theta}^2}{n_0 + n_1}$$

$$V^{sampling}(N_1, N_0, n_1, n_0) = E[var(\hat{\theta} | \mathbf{X}, N_1, N_0) | N_1, N_0] = \frac{S_1^2}{N_1} \left(1 - \frac{N_1}{n_1}\right) + \frac{S_0^2}{N_0} \left(1 - \frac{N_0}{n_0}\right)$$

$$V^{design}(N_1, N_0, n_1, n_0) = E[var(\hat{\theta} | \mathbf{R}, N_1, N_0) | N_1, N_0] = \frac{S_1^2}{N_1} + \frac{S_0^2}{N_0} - \frac{S_{\theta}^2}{N_0 + N_1}$$

Now let's analyze them one by one

- V^{total} is the total variance, considering both sampling-based and design-based uncertainty: var(∂|N₁, N₀)
- It is the variance we want to capture in inference for causal estimator
- V^{sampling} is the variance from only sampling-based uncertainty, by conditioning on treatment assignment: E[var(\u00f3|X, N_1, N_0)|N_1, N_0]
- It is the variance in inference for descriptive estimator
- V^{design} is the variance from only design-based uncertainty, by conditioning on current sample: E[var(∂̂|**R**, N₁, N₀)|N₁, N₀]
- It is the variance in inference for causal sample estimator

We have the following expressions of variances

$$V^{total}(N_{1}, N_{0}, n_{1}, n_{0}) = var(\hat{\theta} | N_{1}, N_{0}) = \frac{S_{1}^{2}}{N_{1}} + \frac{S_{0}^{2}}{N_{0}} - \frac{S_{\theta}^{2}}{n_{0} + n_{1}}$$

$$V^{sampling}(N_{1}, N_{0}, n_{1}, n_{0}) = E[var(\hat{\theta} | \mathbf{X}, N_{1}, N_{0}) | N_{1}, N_{0}] = \frac{S_{1}^{2}}{N_{1}} \left(1 - \frac{N_{1}}{n_{1}}\right) + \frac{S_{0}^{2}}{N_{0}} \left(1 - \frac{N_{0}}{n_{0}}\right)$$

$$V^{design}(N_{1}, N_{0}, n_{1}, n_{0}) = E[var(\hat{\theta} | \mathbf{R}, N_{1}, N_{0}) | N_{1}, N_{0}] = \frac{S_{1}^{2}}{N_{1}} + \frac{S_{0}^{2}}{N_{0}} - \frac{S_{\theta}^{2}}{N_{0} + N_{1}}$$

1. Generally, V^{sampling} and V^{design} cannot be ranked, depending on the sampling rates ^N/_n. A very large sampling rate means a very small V^{sampling}.

We have the following expressions of variances

$$V^{total}(N_{1}, N_{0}, n_{1}, n_{0}) = var(\hat{\theta} | N_{1}, N_{0}) = \frac{S_{1}^{2}}{N_{1}} + \frac{S_{0}^{2}}{N_{0}} - \frac{S_{\theta}^{2}}{n_{0} + n_{1}}$$

$$V^{sampling}(N_{1}, N_{0}, n_{1}, n_{0}) = E[var(\hat{\theta} | \mathbf{X}, N_{1}, N_{0}) | N_{1}, N_{0}] = \frac{S_{1}^{2}}{N_{1}} \left(1 - \frac{N_{1}}{n_{1}}\right) + \frac{S_{0}^{2}}{N_{0}} \left(1 - \frac{N_{0}}{n_{0}}\right)$$

$$V^{design}(N_{1}, N_{0}, n_{1}, n_{0}) = E[var(\hat{\theta} | \mathbf{R}, N_{1}, N_{0}) | N_{1}, N_{0}] = \frac{S_{1}^{2}}{N_{1}} + \frac{S_{0}^{2}}{N_{0}} - \frac{S_{\theta}^{2}}{N_{0} + N_{1}}$$

2. When n→∞, V^{sampling} = V^{total}
 If the population is infinite, then design-based uncertainty is ignorable and traditional inference for causal estimand (without considering design-based uncertainty) is fine

We have the following expressions of variances

$$V^{total}(N_{1}, N_{0}, n_{1}, n_{0}) = var(\hat{\theta} | N_{1}, N_{0}) = \frac{S_{1}^{2}}{N_{1}} + \frac{S_{0}^{2}}{N_{0}} - \frac{S_{\theta}^{2}}{n_{0} + n_{1}}$$

$$V^{sampling}(N_{1}, N_{0}, n_{1}, n_{0}) = E[var(\hat{\theta} | \mathbf{X}, N_{1}, N_{0}) | N_{1}, N_{0}] = \frac{S_{1}^{2}}{N_{1}} \left(1 - \frac{N_{1}}{n_{1}}\right) + \frac{S_{0}^{2}}{N_{0}} \left(1 - \frac{N_{0}}{n_{0}}\right)$$

$$V^{design}(N_{1}, N_{0}, n_{1}, n_{0}) = E[var(\hat{\theta} | \mathbf{R}, N_{1}, N_{0}) | N_{1}, N_{0}] = \frac{S_{1}^{2}}{N_{1}} + \frac{S_{0}^{2}}{N_{0}} - \frac{S_{\theta}^{2}}{N_{0} + N_{1}}$$

■ 3. Consider estimating θ^{descr} or θ^{causal} : When population is finite, V^{total} and $V^{sampling}$ are overstated if we think it is infinite $V^{total}(N_1, N_0, \infty, \infty) - V^{total}(N_1, N_0, n_1, n_0) = \frac{S_{\theta}^2}{n_0 + n_1} \ge 0,$ $V^{sampling}(N_1, N_0, \infty, \infty) - V^{sampling}(N_1, N_0, n_1, n_0) = \frac{S_1^2}{n_1} + \frac{S_0^2}{n_0} \ge 0$

We have the following expressions of variances

$$V^{total}(N_1, N_0, n_1, n_0) = var(\hat{\theta} | N_1, N_0) = \frac{S_1^2}{N_1} + \frac{S_0^2}{N_0} - \frac{S_{\theta}^2}{n_0 + n_1}$$

$$V^{sampling}(N_1, N_0, n_1, n_0) = E[var(\hat{\theta} | \mathbf{X}, N_1, N_0) | N_1, N_0] = \frac{S_1^2}{N_1} \left(1 - \frac{N_1}{n_1}\right) + \frac{S_0^2}{N_0} \left(1 - \frac{N_0}{n_0}\right)$$

$$V^{design}(N_1, N_0, n_1, n_0) = E[var(\hat{\theta} | \mathbf{R}, N_1, N_0) | N_1, N_0] = \frac{S_1^2}{N_1} + \frac{S_0^2}{N_0} - \frac{S_{\theta}^2}{N_0 + N_1}$$

• 4. Consider estimating $\theta^{causal,sample}$: When population is finite, V^{design} is fine even if we think it is infinite $V^{design}(N_1, N_0, \infty, \infty) = V^{design}(N_1, N_0, n_1, n_0)$ Relative sample size does not affect variance conditional on current sample

- In practice, we usually use White estimator of the variance matrix
- It is calculated without considering design-based uncertainty¹

$$\hat{V}^{w} = \frac{\hat{S}_{1}^{2}}{N_{1}} + \frac{\hat{S}_{0}^{2}}{N_{0}}, \text{ where } \hat{S}_{1}^{2} = \frac{1}{N_{1} - 1} \sum_{i=1}^{n} R_{i} X_{i} \left(Y_{i} - \frac{1}{N_{1}} \sum_{i=1}^{n} R_{i} X_{i} Y_{i} \right)^{2}$$

• It is unbiased for V^{total} when *n* is infinite

• The small population bias is $E[\hat{V}^w|N] - V^{total} = S_{\theta}^2/n$

 $^{{}^{1}\}hat{S}_{0}^{2}$ is defined analogously

- We can see that if we ignore design-based uncertainty in inference
- It is fine if we have a small sample compared with a massive population
- Like you have a CFPS dataset to represent all families in China
- But the positive bias will become large if we have a large sample size compared with a limited population
- Like you have a province-level regression
- In this case, traditional variance estimation can be too large and too conservative
- Because you ignore the fact that you already have a large part of the population

- But fortunately, we can derive a bias-corrected estimator
- By taking into consideration
 - You have a large sample relative to a small population
 - You have uncertainty in treatment assignment
- The derivation of this estimator is technical
- Read Abadie et al. (2020) if you are interested

Clustered Standard Errors: Motivating Example

- Next, let's consider the clustering issue
- Many scholars claim that smaller classes are better
- What is the impact of class size on students' achievement?
- Hard to identify using observational data (selection problem)
- STAR is a RCT to answer this question

Clustered Standard Errors: Motivating Example

- It involves 11,600 children in TN
- Kids are randomly assigned to two kinds of classes
 (1) Small class with 13-17 children; (2) Regular class with 22-25 children
- Then we can identify the treatment effect of class size
- One assumption we always make is i.i.d.
- However, students in the same class are of course not independently sampled
- What will happen if we have correlations at class/school/district... level?

Clustered Standard Errors: Motivating Example

- The short answer is: we may underestimate the standard error
- Let's see why it is and how to fix this issue

Clustered Standard Errors: Setting

- Let's go on with the STAR experiment
- Consider the following regression for student *i* in class *g*:

$$y_{ig} = \beta_0 + \beta_1 x_g + e_{ig}$$

- y_{ig} test score; x_g class size (randomly assigned); e_{ig} error term
- This is a special case when x is fixed at g level (same treatment for the whole class)
- Test scores in the same class tend to be correlated (Same environment, teacher...)

Clustered Standard Errors: Setting

Thus, we give up i.i.d. assumption and assume that for student *i* and *j*:

$$E[e_{ig}e_{jg}] = \rho_e\sigma_e^2 > 0$$

- ρ_e is the error intraclass correlation, σ_e^2 is the error variance
- Assume that we can decompose error into

$$e_{ig} = \nu_g + \eta_{ig}, \quad \nu_g \perp \eta_{ig}$$

- We assume that ν_g captures all within class correlations $(\eta_{ig} \perp \eta_{jg})$
- \blacksquare Also assume homoskedasticity for both ν_g and η_{ig}
- Then we can prove that

$$\rho_e = \frac{\sigma_\nu^2}{\sigma_\nu^2 + \sigma_\eta^2} \tag{1}$$

Intraclass correlation is the share of intraclass uncertainty in the total uncertainty

Clustered Standard Errors: Setting

- Equation (1) is called "intraclass correlation coefficient"
- Homework: Derive equation (1) from the previous setting

Clustered Standard Errors: Bias and Moulton Factor

- Let $V_c(\hat{\beta_1})$ be the conventional OLS variance, $V(\hat{\beta_1})$ be the correct variance
- Assume we have classes with equal size *n*, then

$$\frac{V(\hat{\beta}_1)}{V_c(\hat{\beta}_1)} = 1 + (n-1)\rho_\epsilon$$

- We call this Moulton factor
- $n, \rho_e \uparrow \Rightarrow$ Bias of conventional variance \uparrow
- Larger *n* means fewer groups \Rightarrow less information
- Homework 2: What will happen if $\rho_e = 1$? (Answer in MHE)

Clustered Standard Errors: Bias and Moulton Factor

- Previous setting assumes fixed x_g within each group
- Let's see Moulton factor in a more general case when x_{ig} can vary across i in the same group

$$\frac{V(\hat{\beta}_1)}{V_c(\hat{\beta}_1)} = 1 + \left[\frac{V(n_g)}{\bar{n}} + \bar{n} - 1\right] \rho_{\times} \rho_e \tag{2}$$

n is average group size; V(n_g) is variance of group sizes; ρ_x is intraclass correlation of x_{ig}

Clustered Standard Errors: Bias and Moulton Factor

- In general, bias from within class correlation is larger when
 - (1) Average group size ↑
 - (2) Variance of group size ↑
 - (3) Intraclass correlation of treatment x_{ig} \uparrow
 - (4) Error intraclass correlation ↑
- The implication of (3)
 - Bias can be very large in the fixed group treatment x_g case
 - No need to cluster anything if the assignment is totally random for every individual
- The implication of (4): Naturally, no bias when $\rho_e = 0$

Clustered Standard Errors: Fix the Bias

- Now we know that std error estimation can be biased when we have correlation within classes
- What we should do? Several methods are available
 - (1) Use Moulton factor equation (2) to correct
 Not that good: error structure assumptions (homoskedasticity)
 - (2) Recommended: Liang and Zeger (1986) clustering estimator Generally consistent as number of groups $\rightarrow \infty$ (In stata, use option *cluster*)
 - (3) Running group-level regressions $\bar{y}_g = \beta_0 + \beta_1 x_g + \bar{e}_g$ using WLS (group size as weights)

Better finite-sample properties, but x_g has to be group-fixed

Other methods: Block bootstrap, MLE...

- How to choose the level of clustering?
- In STAR experiment, why not boy/girl, black/white/asian...?
- Clustering in more dimensions/higher level gives you larger std errs
- Is that OK to always cluster in more and more dimensions (be conservative)? NO. You can be too conservative ⇒ Overestimate std err
- Similarly, not always good to cluster at higher and higher level

- This is because when you cluster in more and more dimensions
- Or at higher and higher level
- Your effective sample size compared with effective population becomes larger and larger
- As Abadie et al. (2020) has shown, it leads to overestimation of the std err
- For example, you have data of 10,000 firms in 20 provinces
- 10,000 can be a very small proportion of all firms in mainland China
- When you cluster at province level, effective sample rate becomes 20/31!

Thus, two issues remains

- How to choose cluster level reasonably?
- How to incorporate design-based uncertainty?
- Abadie et al. (2023) considers clustering as a sampling/design problem
- Cluster level depends on how you get your samples/assign your treatment
- It comes from the basic idea of Abadie et al. (2020)
- You have to consider both sampling-based and design-based uncertainty
- This is more to the core of the clustering problem

- There are three misconceptions they want to clarity
- 1. The need for clustering hinges on the presence of a correlation between residuals
 - No. The essence is the clustering of sampling or treatment assignment
 - Even if students' scores are correlated within classroom, there is no need to cluster when sampling and treatment are totally random
- 2. No harm in using clustered std err when they are not required
 - Confidence intervals will be unnecessarily conservative
- 3. Researchers either fully adjust for clustering by using Liang and Zeger (1986) or not do that at all
 - Not really. They propose a new estimator CCV/TSCB to correct for large effective sample rate in clustering

Here are some empirical suggestions from Abadie et al. (2023)

- 1. If sampling and treatment are both random
 - Do not cluster!
 - In this case, if sample represents a large fraction of the population, even White estimator is too conservative (Abadie et al., 2020)
- 2. If random sampling but clustered treatment assignment
 - Cluster at the treatment level.
 - In the fuzzy design case, using CCV/TSCB estimator

- 3. If clustered sampling, random treatment assignment
 - Cluster at the sampling level, if you have small fraction of sampled clusters or small fraction of sampled units within each cluster
 - This is specifically important in panel data analysis
 - Do not cluster in other cases
- 4. If clustered sampling, clustered treatment assignment
 - Cluster at the higher level to be conservative

- Let us go over two practical examples
- Case 1: (Sampling cluster) Some household/firm survey will
 - (1) Randomly select 50/300 cities in China
 - (2) Randomly select 100 households in each sampled city
- It gives you a natural stratified data set
- Just cluster at city level (in general, first sampling stage level)
- Case 2: (Treatment cluster) STAR assigns treatment at class level
- Then just cluster at class level

Clustered Standard Errors: DID and Serial Correlation

- One special case we must underscore is panel data analysis
- When using panel data, we usually employ time variation for identification
- You draw people, but not people in a specific year \Rightarrow serial correlation
- You are drawing samples/assign treatment clustered at individual level
- Thus, DID gives a natural clustering structure of error
- One-level-up principle:

Cluster at individual/province/city level, but NEVER individual-year/province-year/city-year level!!

Conclusion

- Today we discuss two nonstandard standard error issues
 - When sample is large compared with population
 - When errors are not i.i.d. but clustered
- In the first issue, we claim that we need to consider both sampling-based and design-based uncertainty
- Using traditional inference will have too large and conservative std err

- In the second case, we find that not adjusting for cluster will generate a too small std err
- We can use LZ estimator to fix it (consistent as #groups $\rightarrow \infty$)
- Clustering at higher level is not always good
- Clustering comes from either clustered sampling or clustered treatment
- Cluster at the first sampling stage, or treatment assignment level
- Do NOT cluster if you have a totally random sample and random treatment
- In DID, cluster one level up to take care of the serial correlation

References

- Abadie, Alberto, Susan Athey, Guido W Imbens, and Jeffrey M Wooldridge. 2020. "Sampling-based versus Design-based Uncertainty in Regression Analysis." *Econometrica* 88 (1):265–296.
- -------. 2023. "When Should You Adjust Standard Errors for Clustering?" The Quarterly Journal of Economics 138 (1):1–35.
- Liang, Kung-Yee and Scott L Zeger. 1986. "Longitudinal Data Analysis Using Generalized Linear Models." *Biometrika* 73 (1):13–22.