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Introduction: Nonstandard Standard Error Issues

Inference is important in practice: Data ⇒ Target distribution

How accurate is our estimate? How confident are we on our results?

In traditional inference, we have two assumptions:

Uncertainty comes from random-sampling, asymptotics when n → ∞
i.i.d. sample, no correlations

What if these two assumptions are violated?
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Introduction: Nonstandard Standard Error Issues

In this lecture, we consider two cases

First, when n is naturally limited (e.g. number of provinces)

Another type of uncertainty becomes important: Design-based uncertainty

Second, when i.i.d. fails and errors are clustered

We have to incorporate this structure in inference

Angrist calls them ”Nonstandard Standard Error Issues”
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Design-based Uncertainty

In usual case, when we talk about inference, what is that?

We have a target parameter: ”estimand” β (Target)

We want to recover it using an ”estimator” (Method) β̂ with a sample from the
population, which gives you a result called ”estimate” β̂ = 0.5 (Result)

This process is called estimation, or statistical inference (Process)
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Design-based Uncertainty

Usually, we consider sampling-based uncertainty

Each time you draw a new sample, it gives you a new estimate from your
estimation process

When sample changes, your estimation result changes

Uncertainty comes from sampling process

Thus, you have a standard error for your estimation

But is this the only uncertainty in empirical research?

Today, we are going to introduce the second source of uncertainty
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Design-based Uncertainty

Design-based uncertainty, introduced by Abadie et al. (2020)

It is the uncertainty coming from the treatment assignment

Treatment Xi is no longer considered fixed

In some cases, person 1 is treated; in other cases, person 1 is not treated

The potential outcome you observed is different when treatment is randomly
changed

We show that this helps you to understand uncertainty of estimation when you
have non-negligible sample size
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Design-based Uncertainty

To visually explain the difference between traditional sampling-based uncertainty
and design-based uncertainty

Let’s take a look at two tables from Abadie et al. (2020)

Ri is an indicator of whether this observation is included in the sample
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Design-based Uncertainty

Sampling-based uncertainty
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Design-based Uncertainty

Design-based uncertainty
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Design-based Uncertainty

Sampling-based uncertainty

Treatment is fixed, sampling observation is random
For non-sampled individuals, we cannot observe anything
Source of uncertainty: in each sample, we have different observations

Design-based uncertainty

Treatment is random, sampling observation is fixed (e.g. all provinces in China)
For each individual, we only observe potential outcome in the realized status (but
not counterfactual status)
Source of uncertainty: in each sample, we have different treatment status for each
individual
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Design-based Uncertainty

Next, the authors construct a simple model and make the following four points:

1. Show how design-based uncertainty affects the variance of the regression
estimator
2. Show White estimator remains conservative when we consider design-based
uncertainty
3. We can derive a finite-population correction for White estimator
4. Discuss two sources of uncertainty and external/internal validity
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Design-based Uncertainty

Assume that we have a finite population of size n

We randomly sample N from n

Ri ∈ {0, 1} as an indicator of whether i is sampled or not

There is a random binary treatment regressor Xi

n1,N1 are treated, n0,N0 are not treated

We have observed and potential outcome as:

Yi = Y
∗
i (Xi) = {Y

∗
i (1) if Xi = 1,

Y
∗
i (0) if Xi = 0

Potential outcomes are assumed to be non-stochastic
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Design-based Uncertainty

We use bold letters to represent vector of the whole sample
(Y,Y∗

i (1),Y∗
i (0),R)

We define three estimands as our proposed targets

Descriptive estimand: free of R and potential outcome (population mean difference)

θ
descr

=
1
n1
∑n

i=1 XiYi −
1
n0
∑n

i=1(1 − Xi)Yi

Causal estimand: parameter depending on potential outcome Y
∗
i (1),Y∗

i (0)
θ
causal,sample

=
1
N
∑n

i=1 Ri(Y ∗
i (1) − Y

∗
i (0))

θ
causal

=
1
n
∑n

i=1(Y
∗
i (1) − Y

∗
i (0))

θ
causal ,sample

is the average causal effect of the current sample

θ
causal

is the average causal effect of the whole population
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Design-based Uncertainty

When estimating θ
descr

, we do not care about design-based uncertainty
Nothing about treatment or potential outcome

When estimating θ
causal ,sample

, we do not care about sampling-based uncertainty
Nothing about sampling process (given current sample)

When estimating θ
causal

, we do care about both types of uncertainty
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Design-based Uncertainty

To estimate these estimands, we use a simple OLS regression of Yi on Xi to have:

θ̂ =
1

N1

n

∑
i=1

RiXiYi −
1

N0

n

∑
i=1

Ri(1 − Xi)Yi

Sampling-based uncertainty comes from the randomness of R

Design-based uncertainty comes from the randomness of X

We further assume that both sampling and treatment assignment are random
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Design-based Uncertainty

It is shown that:

E[θ̂∣X,N1,N0] = θ
descr

E[θ̂∣R,N1,N0] = θ
causal ,sample

E[θ̂∣N1,N0] = θ
causal

Conditioning on treatment, θ is unbiased for descriptive estimand

Conditioning on sampling, θ is unbiased for causal sample estimand

Conditioning on none of them, θ is unbiased for causal estimand
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Design-based Uncertainty

We define the population variances as follows:

S
2
x =

1

n − 1

n

∑
i=1

⎛
⎜
⎝
Y

∗
i (x) −

1
n

n

∑
j=1

Y
∗
j (x)

⎞
⎟
⎠

2

, for x = 0, 1

S
2
θ =

1

n − 1

n

∑
i=1

⎛
⎜
⎝
Y

∗
i (1) − Y

∗
i (0) −

1
n

n

∑
j=1

(Y ∗
j (1) − Y

∗
j (0))

⎞
⎟
⎠

2

S
2
x is the variance of potential outcomes for population

S
2
θ is the variance of treatment effect for population
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Design-based Uncertainty

Based on the defined population variance, we can derive three variances

V
total(N1,N0, n1, n0) = var(θ̂∣N1,N0) =

S
2
1

N1
+

S
2
0

N0
−

S
2
θ

n0 + n1

V
sampling(N1,N0, n1, n0) = E[var(θ̂∣X,N1,N0)∣N1,N0] =

S
2
1

N1
(1 − N1

n1
) + S

2
0

N0
(1 − N0

n0
)

V
design(N1,N0, n1, n0) = E[var(θ̂∣R,N1,N0)∣N1,N0] =

S
2
1

N1
+

S
2
0

N0
−

S
2
θ

N0 + N1

Now let’s analyze them one by one
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Design-based Uncertainty

V
total

is the total variance, considering both sampling-based and design-based
uncertainty: var(θ̂∣N1,N0)
It is the variance we want to capture in inference for causal estimator

V
sampling

is the variance from only sampling-based uncertainty, by conditioning on
treatment assignment: E[var(θ̂∣X,N1,N0)∣N1,N0]
It is the variance in inference for descriptive estimator

V
design

is the variance from only design-based uncertainty, by conditioning on
current sample: E[var(θ̂∣R,N1,N0)∣N1,N0]
It is the variance in inference for causal sample estimator
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Design-based Uncertainty

We have the following expressions of variances

V
total(N1,N0, n1, n0) = var(θ̂∣N1,N0) =

S
2
1

N1
+

S
2
0

N0
−

S
2
θ

n0 + n1

V
sampling(N1,N0, n1, n0) = E[var(θ̂∣X,N1,N0)∣N1,N0] =

S
2
1

N1
(1 − N1

n1
) + S

2
0

N0
(1 − N0

n0
)

V
design(N1,N0, n1, n0) = E[var(θ̂∣R,N1,N0)∣N1,N0] =

S
2
1

N1
+

S
2
0

N0
−

S
2
θ

N0 + N1

1. Generally, V
sampling

and V
design

cannot be ranked, depending on the sampling

rates N
n
. A very large sampling rate means a very small V

sampling
.
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Design-based Uncertainty

We have the following expressions of variances

V
total(N1,N0, n1, n0) = var(θ̂∣N1,N0) =

S
2
1

N1
+

S
2
0

N0
−

S
2
θ

n0 + n1

V
sampling(N1,N0, n1, n0) = E[var(θ̂∣X,N1,N0)∣N1,N0] =

S
2
1

N1
(1 − N1

n1
) + S

2
0

N0
(1 − N0

n0
)

V
design(N1,N0, n1, n0) = E[var(θ̂∣R,N1,N0)∣N1,N0] =

S
2
1

N1
+

S
2
0

N0
−

S
2
θ

N0 + N1

2. When n → ∞, V
sampling

= V
total

If the population is infinite, then design-based uncertainty is ignorable and traditional
inference for causal estimand (without considering design-based uncertainty) is fine

21 / 46



Design-based Uncertainty

We have the following expressions of variances

V
total(N1,N0, n1, n0) = var(θ̂∣N1,N0) =

S
2
1

N1
+

S
2
0

N0
−

S
2
θ

n0 + n1

V
sampling(N1,N0, n1, n0) = E[var(θ̂∣X,N1,N0)∣N1,N0] =

S
2
1

N1
(1 − N1

n1
) + S

2
0

N0
(1 − N0

n0
)

V
design(N1,N0, n1, n0) = E[var(θ̂∣R,N1,N0)∣N1,N0] =

S
2
1

N1
+

S
2
0

N0
−

S
2
θ

N0 + N1

3. Consider estimating θ
descr

or θ
causal

:

When population is finite, V
total

and V
sampling

are overstated if we think it is infinite

V
total(N1,N0,∞,∞) − V

total(N1,N0, n1, n0) = S
2
θ

n0+n1
≥ 0,

V
sampling(N1,N0,∞,∞) − V

sampling(N1,N0, n1, n0) = S
2
1

n1
+ S

2
0

n0
≥ 0
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Design-based Uncertainty

We have the following expressions of variances

V
total(N1,N0, n1, n0) = var(θ̂∣N1,N0) =

S
2
1

N1
+

S
2
0

N0
−

S
2
θ

n0 + n1

V
sampling(N1,N0, n1, n0) = E[var(θ̂∣X,N1,N0)∣N1,N0] =

S
2
1

N1
(1 − N1

n1
) + S

2
0

N0
(1 − N0

n0
)

V
design(N1,N0, n1, n0) = E[var(θ̂∣R,N1,N0)∣N1,N0] =

S
2
1

N1
+

S
2
0

N0
−

S
2
θ

N0 + N1

4. Consider estimating θ
causal,sample

:

When population is finite, V
design

is fine even if we think it is infinite

V
design(N1,N0,∞,∞) = V

design(N1,N0, n1, n0)
Relative sample size does not affect variance conditional on current sample
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Design-based Uncertainty

In practice, we usually use White estimator of the variance matrix

It is calculated without considering design-based uncertainty
1

V̂
w
=

Ŝ
2
1

N1
+

Ŝ
2
0

N0
, where Ŝ

2
1 =

1

N1 − 1

n

∑
i=1

RiXi (Yi −
1

N1

n

∑
i=1

RiXiYi)
2

It is unbiased for V
total

when n is infinite

The small population bias is E[V̂ w ∣N] − V
total

= S
2
θ /n

1
Ŝ
2
0 is defined analogously
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Design-based Uncertainty

We can see that if we ignore design-based uncertainty in inference

It is fine if we have a small sample compared with a massive population

Like you have a CFPS dataset to represent all families in China

But the positive bias will become large if we have a large sample size compared
with a limited population

Like you have a province-level regression

In this case, traditional variance estimation can be too large and too conservative

Because you ignore the fact that you already have a large part of the population

25 / 46



Design-based Uncertainty

But fortunately, we can derive a bias-corrected estimator

By taking into consideration

You have a large sample relative to a small population
You have uncertainty in treatment assignment

The derivation of this estimator is technical

Read Abadie et al. (2020) if you are interested
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Clustered Standard Errors: Motivating Example

Next, let’s consider the clustering issue

Many scholars claim that smaller classes are better

What is the impact of class size on students’ achievement?

Hard to identify using observational data (selection problem)

STAR is a RCT to answer this question
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Clustered Standard Errors: Motivating Example

It involves 11,600 children in TN

Kids are randomly assigned to two kinds of classes
(1) Small class with 13-17 children; (2) Regular class with 22-25 children

Then we can identify the treatment effect of class size

One assumption we always make is i.i.d.

However, students in the same class are of course not independently sampled

What will happen if we have correlations at class/school/district... level?
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Clustered Standard Errors: Motivating Example

The short answer is: we may underestimate the standard error

Let’s see why it is and how to fix this issue
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Clustered Standard Errors: Setting

Let’s go on with the STAR experiment

Consider the following regression for student i in class g :

yig = β0 + β1xg + eig

yig test score; xg class size (randomly assigned); eig error term

This is a special case when x is fixed at g level (same treatment for the whole
class)

Test scores in the same class tend to be correlated (Same environment, teacher...)
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Clustered Standard Errors: Setting

Thus, we give up i.i.d. assumption and assume that for student i and j :

E[eigejg] = ρeσ
2
e > 0

ρe is the error intraclass correlation, σ
2
e is the error variance

Assume that we can decompose error into

eig = νg + ηig , νg ⫫ ηig

We assume that νg captures all within class correlations (ηig ⫫ ηjg )

Also assume homoskedasticity for both νg and ηig
Then we can prove that

ρe =
σ
2
ν

σ2
ν + σ2

η

(1)

Intraclass correlation is the share of intraclass uncertainty in the total uncertainty
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Clustered Standard Errors: Setting

Equation (1) is called ”intraclass correlation coefficient”

Homework: Derive equation (1) from the previous setting
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Clustered Standard Errors: Bias and Moulton Factor

Let Vc(β̂1) be the conventional OLS variance, V (β̂1) be the correct variance

Assume we have classes with equal size n, then

V (β̂1)
Vc(β̂1)

= 1 + (n − 1)ρe

We call this Moulton factor

n,ρe ↑ ⇒ Bias of conventional variance ↑

Larger n means fewer groups ⇒ less information

Homework 2: What will happen if ρe = 1? (Answer in MHE)
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Clustered Standard Errors: Bias and Moulton Factor

Previous setting assumes fixed xg within each group

Let’s see Moulton factor in a more general case when xig can vary across i in the
same group

V (β̂1)
Vc(β̂1)

= 1 + [
V (ng)

n̄
+ n̄ − 1] ρxρe (2)

n̄ is average group size; V (ng) is variance of group sizes; ρx is intraclass
correlation of xig
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Clustered Standard Errors: Bias and Moulton Factor

In general, bias from within class correlation is larger when

(1) Average group size ↑

(2) Variance of group size ↑

(3) Intraclass correlation of treatment xig ↑

(4) Error intraclass correlation ↑

The implication of (3)

Bias can be very large in the fixed group treatment xg case
No need to cluster anything if the assignment is totally random for every individual

The implication of (4): Naturally, no bias when ρe = 0
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Clustered Standard Errors: Fix the Bias

Now we know that std error estimation can be biased when we have correlation
within classes

What we should do? Several methods are available

(1) Use Moulton factor equation (2) to correct
Not that good: error structure assumptions (homoskedasticity)
(2) Recommended: Liang and Zeger (1986) clustering estimator
Generally consistent as number of groups → ∞ (In stata, use option cluster)
(3) Running group-level regressions ȳg = β0 + β1xg + ēg using WLS (group size as
weights)
Better finite-sample properties, but xg has to be group-fixed
Other methods: Block bootstrap, MLE...
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Clustered Standard Errors: Choosing Cluster Levels

How to choose the level of clustering?

In STAR experiment, why not boy/girl, black/white/asian...?

Clustering in more dimensions/higher level gives you larger std errs

Is that OK to always cluster in more and more dimensions (be conservative)? NO.
You can be too conservative ⇒ Overestimate std err

Similarly, not always good to cluster at higher and higher level
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Clustered Standard Errors: Choosing Cluster Levels

This is because when you cluster in more and more dimensions

Or at higher and higher level

Your effective sample size compared with effective population becomes larger and
larger

As Abadie et al. (2020) has shown, it leads to overestimation of the std err

For example, you have data of 10,000 firms in 20 provinces

10,000 can be a very small proportion of all firms in mainland China

When you cluster at province level, effective sample rate becomes 20/31!
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Clustered Standard Errors: Choosing Cluster Levels

Thus, two issues remains

How to choose cluster level reasonably?
How to incorporate design-based uncertainty?

Abadie et al. (2023) considers clustering as a sampling/design problem

Cluster level depends on how you get your samples/assign your treatment

It comes from the basic idea of Abadie et al. (2020)

You have to consider both sampling-based and design-based uncertainty

This is more to the core of the clustering problem
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Clustered Standard Errors: Choosing Cluster Levels

There are three misconceptions they want to clarity

1. The need for clustering hinges on the presence of a correlation between
residuals

No. The essence is the clustering of sampling or treatment assignment
Even if students’ scores are correlated within classroom, there is no need to cluster
when sampling and treatment are totally random

2. No harm in using clustered std err when they are not required

Confidence intervals will be unnecessarily conservative

3. Researchers either fully adjust for clustering by using Liang and Zeger (1986)
or not do that at all

Not really. They propose a new estimator CCV/TSCB to correct for large effective
sample rate in clustering
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Clustered Standard Errors: Choosing Cluster Levels

Here are some empirical suggestions from Abadie et al. (2023)

1. If sampling and treatment are both random

Do not cluster!
In this case, if sample represents a large fraction of the population, even White
estimator is too conservative (Abadie et al., 2020)

2. If random sampling but clustered treatment assignment

Cluster at the treatment level.
In the fuzzy design case, using CCV/TSCB estimator
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Clustered Standard Errors: Choosing Cluster Levels

3. If clustered sampling, random treatment assignment

Cluster at the sampling level, if you have small fraction of sampled clusters or small
fraction of sampled units within each cluster
This is specifically important in panel data analysis
Do not cluster in other cases

4. If clustered sampling, clustered treatment assignment

Cluster at the higher level to be conservative
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Clustered Standard Errors: Choosing Cluster Levels

Let us go over two practical examples

Case 1: (Sampling cluster) Some household/firm survey will

(1) Randomly select 50/300 cities in China
(2) Randomly select 100 households in each sampled city

It gives you a natural stratified data set

Just cluster at city level (in general, first sampling stage level)

Case 2: (Treatment cluster) STAR assigns treatment at class level

Then just cluster at class level
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Clustered Standard Errors: DID and Serial Correlation

One special case we must underscore is panel data analysis

When using panel data, we usually employ time variation for identification

You draw people, but not people in a specific year ⇒ serial correlation

You are drawing samples/assign treatment clustered at individual level

Thus, DID gives a natural clustering structure of error

One-level-up principle:
Cluster at individual/province/city level, but NEVER
individual-year/province-year/city-year level!!
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Conclusion

Today we discuss two nonstandard standard error issues

When sample is large compared with population
When errors are not i.i.d. but clustered

In the first issue, we claim that we need to consider both sampling-based and
design-based uncertainty

Using traditional inference will have too large and conservative std err
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Conclusion

In the second case, we find that not adjusting for cluster will generate a too small
std err

We can use LZ estimator to fix it (consistent as #groups→ ∞)

Clustering at higher level is not always good

Clustering comes from either clustered sampling or clustered treatment

Cluster at the first sampling stage, or treatment assignment level

Do NOT cluster if you have a totally random sample and random treatment

In DID, cluster one level up to take care of the serial correlation
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