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Introduction: Discrete Choice Model

In previous lectures, we focus on reduced-form approach

In this lecture, we will give a very brief introduction to the Discrete Choice Model

It considers problems when y is discrete

DCM stays in the intersection of reduced-form and structural models
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Introduction: Discrete Choice Model

You can learn and understand it in both frameworks

If you understand it in a reduced-form way

Another kind of non-linear regression model
Harder to interpret, but better than LPM to fit when y is binary

If you understand it in a structural way, it is actually a brand new world

Each parameter is a structural parameter of the behavior model
There is underlying welfare implication
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Motivating Example: Female Labor Participation

Still remember the example in our first class?

Consider a female labor participation problem

Utility maximization of the female i :

max Ui(ci , 1 − li) + ϵil (1)

s.t. ci = wi li

ci : consumption; li : labor supply; ϵil : unobserved taste shock; wi : wage
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Motivating Example: Female Labor Participation

Assume that li is binary (work, not work)

li = 1 if U(l = 1) ≥ U(l = 0):

Ui(wi , , 0) + ϵi1 ≥ Ui(0, 1) + ϵi0 (2)

Then given wi , we have a threshold value of ϵi1 − ϵi0 to have i to choose to work:

li = 1 if ϵi0 − ϵi1 < ϵ
∗

(3)

ϵ
∗
= Ui(wi , 0) − Ui(0, 1)
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Motivating Example: Female Labor Participation

Assume that shock ϵi1 − ϵi0 has a CDF Fϵ∣w
We have the following working probability for i :

G(w) = Pr(l = 1∣w) = ∫
ϵ
∗

−∞
dFϵ∣w

= Fϵ∣w(ϵ∗(w)) (4)

Two empirical research approaches for this question
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Motivating Example: Female Labor Participation

Now, remind yourself:

What does reduced-form approach do?

What does structural approach do?

What are the pros and cons for these two methods?
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Motivating Example: Female Labor Participation

This is a very typical example of Discrete Choice Model (DCM)

Today, we will have a brief introduction to DCM and its important example:
Logit model

Tips: Logit model is intrinsically structural
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Introduction to DCM: Settings

DCM describes decision makers’ choices among discrete alternatives

A man chooses whether to smoke or not

A student chooses how to go to school (Bus/Taxi/Bike)

A firm chooses whether to enter a local market (Walmart vs. Local store)
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Introduction to DCM: Settings

In continuous (differentiable) choice model, how do we optimize agents’ choices?

By taking FOC and finding internal solution

But can we do the same thing for DCM? NO.
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Introduction to DCM: Settings

Assume that we have N decision makers, choosing among a set of J alternatives
1, 2, ..., j

Decision maker n can get utility Unj for choosing j

The optimization is: n choose i if and only if

Uni > Unj ,∀j ≠ i (5)

Researcher does not observe utility directly

We see their choice results (revealed preference)

We observe attributes of choices faced by agents xnj , and agents’ personal
characteristics sn

Thus, we denote Vnj = V (xnj , sn) as representative utility
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Introduction to DCM: Settings

Utility of choice j to agent n can be expressed as:

Unj = Vnj + ϵnj (6)

ϵnj is the part of utility affected by unobserved factors

Assume that we have pdf f (ϵn) for ϵ
′
n = [ϵn1, ...ϵnJ] across the population

Pni = P(Uni > Unj ,∀j ≠ i)
= P(Vni + ϵni > Vnj + ϵnj ,∀j ≠ i)
= P(ϵnj − ϵni < Vni − Vnj ,∀j ≠ i)

= ∫
ϵ
I (ϵnj − ϵni < Vni − Vnj ,∀j ≠ i)f (ϵn)dϵn
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Introduction to DCM: Settings

This is the probability for an agent with Vni to choose alternative i

Pni = ∫
ϵ
I (ϵnj − ϵni < Vni − Vnj ,∀j ≠ i)f (ϵn)dϵn

Different assumptions of the pdf f (ϵn) gives different models

This expression does not guarantee a closed-form choice probability

Type I Extreme Value Distribution gives Logit (Closed-form)

Normal Distribution gives Probit (Not closed-form)

Logit and Probit are specific types of DCM
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Introduction to DCM: Identification

The identification of the DCM is important

It relates to some primitive properties of utility function

It can be concluded in two statements

1. Only differences in utility matter
2. The scale of utility is arbitrary

Why is this the case?

Let’s go back to the fundamental theory of utility
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Introduction to DCM: Identification

Utility function comes from preference

Assume that we have goods set X , a preference relation ≿ defined on X ,
satisfying

(1)Completeness: ∀x , y ∈ X , we have x ≿ y or y ≿ x (or both)
(2)Transitivity: ∀x , y , z ∈ X , if x ≿ y , y ≿ z , then x ≿ z

We call it a ”rational” preference

Definition 1.B.2 in MWG

A function u ∶ X → R is a utility function representing preference ≿ if ∀x , y ∈ X ,
x ≿ y ⇔ u(x) ≥ u(y)

There exists a utility function ⇒ Preference is rational
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Introduction to DCM: Identification

A utility function assigns a numerical value to each element in X in accordance
with the individual’s preferences

Thus, utility is a representation of preference!

Preference is ordinal ⇒ Utility is ordinal

If a rational preference can be represented by u, then it can be represented by any
strictly increasing transformation of it

For instance, u + 1, u + k, u ∗ 2, ku......
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Introduction to DCM: Identification

1. Only differences in utility matter

2. The scale of utility is arbitrary

Let’s use an example to reveal these two statements

Assume that you can go to school either by bus (b) or by car (c)

Tj is the speed of choice j , kj is choice fixed effect

Uc = αTc + kc + ϵc

Ub = αTb + kb + ϵb
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Introduction to DCM: Identification

1. Only differences in utility matter

Take difference, we have:

Uc − Ub = α(Tc − Tb) + (kc − kb) + (ϵc − ϵb)

Only (kc − kb) can be identified, but not kc and kb separately

System uj and uj + 1 are observational equivalent

I don’t care it is ui − uj or ui + 1 − (uj + 1)
Thus, you cannot give each alternative a constant

What to do in practice: Normalize the utility of one of the alternatives to be zero
(Implicitly done by running logit/probit regressions)
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Introduction to DCM: Identification

1. Only differences in utility matter

In addition, not all differences matter

Assume that you include some personal characteristics Yn in the utility

Unc = αTc + βYn + γYnTc + ϵnc

Unb = αTb + βYn + γYnTb + ϵnb

Unb − Unc = α(Tb − Tc) + γYn(Tb − Tc) + (ϵnb − ϵnc)

Yn is canceled out, only γ is identified, but not β

Differences in personal characteristics does not matter

We are comparing alternatives for each person, not across people

It matters only if it interacts with choice characteristics

Don’t add personal-level variable without interaction with choice-level variable
19 / 49
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Introduction to DCM: Identification

2. The scale of utility is arbitrary

Similarly, uj and uj ∗ 2 are observational equivalent
I don’t care it is ui − uj or 2 ∗ (ui − uj)
Assume that we have the following model 1

Unc = αTc + βYn + ϵnc

Unb = αTb + βYn + ϵnb

Unb − Unc = α(Tb − Tc) + (ϵnb − ϵnc)
And the following model 2

2Unc = α2Tc + 2βYn + 2ϵnc

2Unb = α2Tb + 2βYn + 2ϵnb

2Unb − 2Unc = α2(Tb − Tc) + 2(ϵnb − ϵnc)
They are observational equivalent
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Introduction to DCM: Identification

2. The scale of utility is arbitrary

Thus, we need to normalize the scale

What to do: normalize the variance of the error

In Logit, this is automatically done: T1EV error has variance of π
2

6

In Probit, this is automatically done: Standard Normal error has variance of 1

21 / 49



Introduction to DCM: Identification

2. The scale of utility is arbitrary

Thus, we need to normalize the scale

What to do: normalize the variance of the error

In Logit, this is automatically done: T1EV error has variance of π
2

6

In Probit, this is automatically done: Standard Normal error has variance of 1

21 / 49



Introduction to DCM: Identification

2. The scale of utility is arbitrary

Thus, we need to normalize the scale

What to do: normalize the variance of the error

In Logit, this is automatically done: T1EV error has variance of π
2

6

In Probit, this is automatically done: Standard Normal error has variance of 1

21 / 49



Introduction to DCM: Identification

2. The scale of utility is arbitrary

Thus, we need to normalize the scale

What to do: normalize the variance of the error

In Logit, this is automatically done: T1EV error has variance of π
2

6

In Probit, this is automatically done: Standard Normal error has variance of 1

21 / 49



Introduction to DCM: Identification

2. The scale of utility is arbitrary

Thus, we need to normalize the scale

What to do: normalize the variance of the error

In Logit, this is automatically done: T1EV error has variance of π
2

6

In Probit, this is automatically done: Standard Normal error has variance of 1

21 / 49



Introduction to DCM: Identification

2. The scale of utility is arbitrary

Thus, we need to normalize the scale

What to do: normalize the variance of the error

In Logit, this is automatically done: T1EV error has variance of π
2

6

In Probit, this is automatically done: Standard Normal error has variance of 1

21 / 49



Introduction to Logit Model: Settings

Assume that ϵnj is i.i.d. Type One Extreme Value (T1EV)

PDF: f (ϵnj) = e
−ϵnj e

−e−ϵnj

CDF: F (ϵnj) = e
e
−ϵnj

Since error terms are independent, we have:

F (ϵn1, ..., ϵnJ) = e
∑j=1,...,J e

−ϵnj

Then we call this DCM a Logit model
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Introduction to Logit Model: Choice Probability

Let’s derive the choice probability of Logit model

Pni = P(Uni > Unj ,∀j ≠ i)

= ∫
ϵ
I (ϵnj − ϵni < Vni − Vnj ,∀j ≠ i)f (ϵn)dϵn

It turns out that we can write the (multinomial) choice probability as:

Pni =
e
Vni

∑j e
Vnj

(7)

Usually, we have to normalize one of the choices (let’s say, choice j0) to have a
utility of zero:

Pni =
e
Vni

1 +∑j≠j0
eVnj

(8)
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Introduction to Logit Model: Choice Probability

Thus, in a binary choice case, we have:

Pn1 =
e
Vn1

1 + eVn1
(9)

This normalized choice is usually some baseline choice or outside option

For instance, in an education choice model, we have choices:
Go to PKU, Go to Fudan, Go to SUFE, Not go to school

We normalize not go to school to have utility of zero
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Introduction to Logit Model: Choice Probability

Homework: Derive the choice probability equation (7). The answer is in Train’s
book, Chapter 3.
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Introduction to Logit Model: Choice Probability

What does this choice probability mean?

Pni =
e
Vni

∑j e
Vnj

Choice probability of i , is the proportion of i ’s exponential choice value, over the
total exponential choice value

Compatible with choice probability definition: 0 < Pni < 1, ∑i Pni = 1 (Not like
LPM)
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Introduction to Logit Model: Choice Probability

The relation of probability with representative utility is sigmoid (S-shaped)

Marginal effects of Vni on Pni increase first and then decrease

If you use a linear fit, which part do you fit the best?
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Introduction to Logit Model: IIA

An important property: Independence from Irrelevant Alternatives (IIA)

IIA: For any two alternatives i , k , the ratio of the logit probability is

Pni

Pnk
=

e
Vni/∑j e

Vnj

eVnk/∑j e
Vnj

=
e
Vni

eVnk
= e

Vni−Vnk

The ratio has nothing to do with other alternatives

Prob ratio between any pair of choices depends only on their own choice values

Add a new choice, delete another choice, will not change the ratio
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Introduction to Logit Model: IIA

A manifestation of IIA is proportionate shifting

A change in an attribute z of choice j , will change probabilities of all other
choices by the same proportion

With linear utility, the elasticity of choice prob i on changes in z of choice j is

Eiznj =
∂Pni

∂znj

znj
Pni

= −βzznjPnj ,∀i

It is only related to j , same for any i

29 / 49



Introduction to Logit Model: IIA

A manifestation of IIA is proportionate shifting

A change in an attribute z of choice j , will change probabilities of all other
choices by the same proportion

With linear utility, the elasticity of choice prob i on changes in z of choice j is

Eiznj =
∂Pni

∂znj

znj
Pni

= −βzznjPnj ,∀i

It is only related to j , same for any i

29 / 49



Introduction to Logit Model: IIA

A manifestation of IIA is proportionate shifting

A change in an attribute z of choice j , will change probabilities of all other
choices by the same proportion

With linear utility, the elasticity of choice prob i on changes in z of choice j is

Eiznj =
∂Pni

∂znj

znj
Pni

= −βzznjPnj ,∀i

It is only related to j , same for any i

29 / 49



Introduction to Logit Model: IIA

A manifestation of IIA is proportionate shifting

A change in an attribute z of choice j , will change probabilities of all other
choices by the same proportion

With linear utility, the elasticity of choice prob i on changes in z of choice j is

Eiznj =
∂Pni

∂znj

znj
Pni

= −βzznjPnj ,∀i

It is only related to j , same for any i

29 / 49



Introduction to Logit Model: IIA

A manifestation of IIA is proportionate shifting

A change in an attribute z of choice j , will change probabilities of all other
choices by the same proportion

With linear utility, the elasticity of choice prob i on changes in z of choice j is

Eiznj =
∂Pni

∂znj

znj
Pni

= −βzznjPnj ,∀i

It is only related to j , same for any i

29 / 49



Introduction to Logit Model: IIA

Is IIA a good property?

Sometimes yes, sometimes no

It can save computational resources when the number of choices is large

But it is also limited: Red bus-Blue bus problem

We will introduce more flexible models soon
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Introduction to Logit Model: Derivatives and Marginal Effect

The derivative of choice probability on its own attribute is:

∂Pni

∂zni
=

∂Vni

∂zni
Pni(1 − Pni) (10)

Parameter is not marginal effect: ∂Pni

∂zni
≠

∂Vni

∂zni

Even if V is linear, you cannot interpret β =
∂Vni

∂zni
as marginal effect of z on P

Derivative is non-linear, largest when Pni = (1 − Pni) = 0.5
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Introduction to Logit Model: Derivatives and Marginal Effect

Homework 2: Derive equation 10. The answer is in Train’s book, Chapter 3.
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Introduction to Logit Model: Consumer Surplus

We are usually interested in the overall welfare of a consumer

What is the impact of some policy changing some choices for a consumer?

In Logit model, we have a closed-form solution for expected utility:

E(Un) = E[maxj(Vnj + ϵnj)] = ln(
J

∑
j=1

e
Vnj ) + C

C is a constant depending on the normalization

The expected utility is the log sum of the exponential values of all choices

The consumer surplus (WTP) is just:

E(CSn) =
1
αn

E(Un)

αn is the marginal utility of dollar income
33 / 49
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Introduction to Logit Model: Consumer Surplus

Therefore, there are two important closed-form formula we can get in Logit

A closed-form choice probability:

Pni =
e
Vni

∑j e
Vnj

A closed-form expected (ex-ante) utility value of the choice set:

E(Un) = E[maxj(Vnj + ϵnj)] = ln(∑J
j=1 e

Vnj ) + C

They are very useful tricks in structural research
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Introduction to Logit Model: Estimation

We use MLE to estimate Logit model

L(β) =
N

∏
n

∏
i

(Pni)yni

LL(β) =
N

∑
n=1

∑
i

yni lnPni

β̂MLE = argmaxβLL(β)

yni is whether choice i is chosen in the data by individual n

LL(β) is globally concave, so it has a global maximum value
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Motivating Example: Blue Bus vs Red Bus

As we have shown, Logit has a property of IIA

Given two options A and B, changes of the third option would not change the
relative probability of A and B

In some situations, this property is not plausible
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Motivating Example: Blue Bus vs Red Bus

Assume that we have two choices
Blue Bus vs. Taxi

PBB = PT =
1
2

One day, the bus company decides to introduce some buses with a new color, red

Now we have blue bus, red bus, taxi

Red/blue bus is identical besides their color ⇒ PRB = PBB

Due to IIA, we have: PRB = PBB = PT =
1
3

You increase the probability of choosing bus by basically doing nothing

37 / 49



Motivating Example: Blue Bus vs Red Bus

Assume that we have two choices
Blue Bus vs. Taxi

PBB = PT =
1
2

One day, the bus company decides to introduce some buses with a new color, red

Now we have blue bus, red bus, taxi

Red/blue bus is identical besides their color ⇒ PRB = PBB

Due to IIA, we have: PRB = PBB = PT =
1
3

You increase the probability of choosing bus by basically doing nothing

37 / 49



Motivating Example: Blue Bus vs Red Bus

Assume that we have two choices
Blue Bus vs. Taxi

PBB = PT =
1
2

One day, the bus company decides to introduce some buses with a new color, red

Now we have blue bus, red bus, taxi

Red/blue bus is identical besides their color ⇒ PRB = PBB

Due to IIA, we have: PRB = PBB = PT =
1
3

You increase the probability of choosing bus by basically doing nothing

37 / 49



Motivating Example: Blue Bus vs Red Bus

Assume that we have two choices
Blue Bus vs. Taxi

PBB = PT =
1
2

One day, the bus company decides to introduce some buses with a new color, red

Now we have blue bus, red bus, taxi

Red/blue bus is identical besides their color ⇒ PRB = PBB

Due to IIA, we have: PRB = PBB = PT =
1
3

You increase the probability of choosing bus by basically doing nothing

37 / 49



Motivating Example: Blue Bus vs Red Bus

Assume that we have two choices
Blue Bus vs. Taxi

PBB = PT =
1
2

One day, the bus company decides to introduce some buses with a new color, red

Now we have blue bus, red bus, taxi

Red/blue bus is identical besides their color ⇒ PRB = PBB

Due to IIA, we have: PRB = PBB = PT =
1
3

You increase the probability of choosing bus by basically doing nothing

37 / 49



Motivating Example: Blue Bus vs Red Bus

Assume that we have two choices
Blue Bus vs. Taxi

PBB = PT =
1
2

One day, the bus company decides to introduce some buses with a new color, red

Now we have blue bus, red bus, taxi

Red/blue bus is identical besides their color ⇒ PRB = PBB

Due to IIA, we have: PRB = PBB = PT =
1
3

You increase the probability of choosing bus by basically doing nothing

37 / 49



Motivating Example: Blue Bus vs Red Bus

Assume that we have two choices
Blue Bus vs. Taxi

PBB = PT =
1
2

One day, the bus company decides to introduce some buses with a new color, red

Now we have blue bus, red bus, taxi

Red/blue bus is identical besides their color ⇒ PRB = PBB

Due to IIA, we have: PRB = PBB = PT =
1
3

You increase the probability of choosing bus by basically doing nothing

37 / 49



Motivating Example: Blue Bus vs Red Bus

Assume that we have two choices
Blue Bus vs. Taxi

PBB = PT =
1
2

One day, the bus company decides to introduce some buses with a new color, red

Now we have blue bus, red bus, taxi

Red/blue bus is identical besides their color ⇒ PRB = PBB

Due to IIA, we have: PRB = PBB = PT =
1
3

You increase the probability of choosing bus by basically doing nothing

37 / 49



Nested Logit: Setting

To solve the Blue/Red bus issue, we introduce an extension of Logit model:
Nested Logit Model

We allow for correlations over some of the options

We have utility of choice j to agent n can be expressed as:

Unj = Vnj + ϵnj (11)

In nested logit, we have ϵ = (ϵn1, ..., ϵnJ) are jointly distributed as a generalized
extreme value (GEV)
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Nested Logit: Setting

Let the choice set be partitioned into K subsets B1, ...,BK called nests

CDF of ϵ = (ϵn1, ..., ϵnJ) is:

F (ϵ) = exp(−
K

∑
k=1

(∑
j∈Bk

e
−

ϵnj
λk )λk )

Marginal distribution of each ϵnj is univariate T1EV

Any two options within the same nest, have correlated ϵ

Any two options in the different nests, have uncorrelated ϵ

λk : measure of degree of independence

Higher λk , less correlation of choices within the same nest
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Nested Logit: Setting

Homework 3: What does it mean when you have λk = 1,∀k? What is the model
now? Why?
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Nested Logit: Choice Probability

We can show that the choice probability of nested logit is:

Pni =
e
Vni/λk (∑j∈Bk

e
Vni/λk )λk−1

∑K
l=1(∑j∈Bl

eVnj/λl )λl−1
(12)

We have (∑j∈Bk
e
Vnj/λk )λk−1 in the numerator (All choices in the same nest)

Given two alternatives i ∈ k and m ∈ l , we have the probability ratio as:

Pni

Pnm
=

e
Vnj/λk (∑j∈Bk

e
Vnj/λk )λk−1

eVnm/λl (∑j∈Bl
eVnj/λl )λl−1
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Nested Logit: IIN

If k = l , we have IIA for two choices in the same nest

Pni

Pnm
=

e
Vni/λk

eVnm/λl

If k ≠ l , we do not have IIA for two choices in different nests

Relative probability of i ,m is related to other choices in their own nests k and l

But not choices in other nests

We call it ”Independence from Irrelevant Nests” (IIN)
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Nested Logit: An Example

Auto=(Auto alone, Carpool), Transit=(Bus, Rail)
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Nested Logit: Decomposition

Nested Logit can be decomposed into two Logits

Assume that we have utility

Unj = Wnk + Ynj + ϵnj

Wnk nest-level value; Ynj option-level value; ϵ follows GEV

We can decompose the choice probability as:

Pni = Pni∣Bk
PnBk

=
e
Yni/λk

∑j∈Bk
eYnj/λk

⋅
e
Wnk+λk Ink

∑K
l=1 e

Wnl+λl Inl

Expected utility of all choices in nest k : Ink = ln∑j∈Bk
e
Ynj/λk
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Nested Logit: Decomposition

Thus, you can estimate the parameters in two steps

First, estimate parameters in Pni∣Bk

Second, given first step estimated parameters, we calculate Ink

Then we estimate parameters in PnBk
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Conclusion: Logit or LPM?

An important practical question is, when to use Logit? When to use linear
probability model (LPM)?

Let’s first list pros and cons

For Logit: non-linear fitting with functional form assumption

Coefficients are ”structural” and primitive ⇒ Utility, Production...
But coefficients are neither marginal effects nor weighted treatment effects
Computationally intensive: especially MLE for high-dimensional dummies

For LPM: linear fitting, more an approximation

Coefficients are marginal effects, very easy to interpret
But will predict probability > 1 or < 0
Computationally simple: OLS regression
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For LPM: linear fitting, more an approximation

Coefficients are marginal effects, very easy to interpret
But will predict probability > 1 or < 0
Computationally simple: OLS regression
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Conclusion: Logit or LPM?

Here are some personal views

If you do care about the primitive parameter ⇒ Logit

If you are interested in extrapolating your prediction (predict y for x with few
samples nearby) ⇒ Logit

If you have x distributed pretty uniformly over the range, while want to predict y
for very small or very large x ⇒ Logit

Otherwise, you can choose LPM
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Conclusion: Main Takeaways

Main Takeaways

Logit is intrinsically a structural approach, whose parameters have structural
meaning

Logit is a special kind of DCM when the error is T1EV distributed

Logit is convenient since it has closed-form choice probability and expected utility

Logit has a property of IIA, that the relative probability of two choices is not
affected by the third one

The interpretation of Logit (or in general, non-linear model) is not as
straightforward as Linear probability model
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Nested Logit is a more general model than Logit

We assume GEV: choices within the same nest have correlated ϵ

IIA for two choices within the same nest but not across different nests

For two choices across different nests, we have IIN
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